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Abstract

Spectrum sharing enables radar and communication systems to share the spectrum efficiently by minimizing

mutual interference. Recently proposed multiple input multiple output radars based on sparse sensing and matrix

completion (MIMO-MC), in addition to reducing communication bandwidth and power as compared to MIMO radars,

offer a significant advantage for spectrum sharing. The advantage stems from the way the sampling scheme at the

radar receivers modulates the interference channel from the communication system transmitters, rendering it symbol

dependent and reducing its row space. This makes it easier for the communication system to design its waveforms in

an adaptive fashion so that it minimizes the interference to the radar subject to meeting rate and power constraints.

Two methods are proposed. First, based on the knowledge of the radar sampling scheme, the communication system

transmit covariance matrix is designed to minimize the effective interference power (EIP) to the radar receiver, while

maintaining certain average capacity and transmit power for the communication system. Second, a joint design of the

communication transmit covariance matrix and the MIMO-MC radar sampling scheme is proposed, which achieves

even further EIP reduction.

Index Terms

Collocated MIMO radar, matrix completion, spectrum sharing

I. INTRODUCTION

The operating frequency bands of communication and radar systems often overlap, causing one system to exert

interference to the other. For example, the high UHF radar systems overlap with GSM communication systems, and

the S-band radar systems partially overlap with Long Term Evolution (LTE) and WiMax systems [2]–[5]. Spectrum

sharing is an emerging technology that can be applied to enable radar and communication systems to share the

spectrum efficiently by minimizing mutual interference [4]–[11].
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In this paper we study spectrum sharing between a special class of collocated MIMO radars and a MIMO

communication system. The rationale behind considering a MIMO-type radar system is the high resolution which

such systems can achieve with a relatively small number of transmit (TX) and receive (RX) antennas [12]–[15].

A MIMO radar system lends itself to a networked implementation, which is very desirable in both military and

civilian applications. A networked radar is a configuration of TX and RX antennas. The TX antennas transmit

probing waveforms, and target information is extracted by jointly processing the measurements of all RX antennas.

This processing can be done at a fusion center, i.e., a network node endowed with more computational power than

the rest of the nodes. Reliable surveillance requires collection, communication and fusion of vast amounts of data

from various antennas. This is a power and bandwidth consuming task, which can be especially taxing in scenarios

in which the antennas are on battery operated devices and are connected to the fusion center via a wireless link.

Recently, MIMO radars using compressive sensing (MIMO-CS) [16]–[19], and MIMO radars via matrix completion

(MIMO-MC) [20]–[23] have been proposed to save power and bandwidth on the link between the receivers and the

fusion center, thus facilitating the network implementation of MIMO radars. MIMO-MC radars transmit orthogonal

waveforms from their multiple TX antennas. Each RX antenna samples the target returns in a pseudo-random

sub-Nyquist fashion and forwards the samples to the fusion center, along with the seed of the random sampling

sequence. By collecting the samples of all RX antennas, and based on knowledge of each antenna’s sampling

scheme, the fusion center constructs a matrix, refereed to as the data matrix (see [21] Scheme I), in which only the

entries corresponding to sampled times contain non-zero values. Subsequently, the missing entries, corresponding

to non-sampled times, are provably recovered via MC techniques. In MIMO-MC radars the interference is confined

to the sampled entries of the data matrix, while after matrix completion the target echo power is preserved. Unlike

MIMO-CS, MIMO-MC does not require discretization of the target space, thus does not suffer from grid mismatch

issues [24].

Spectrum sharing between a MIMO radar and a communication system has been considered in [5]–[8], where the

radar interference is eliminated by projecting the radar waveforms onto the null space of the interference channel

between the MIMO radar transmitters and the communication system. In [9], a radar receive filter was proposed to

mitigate the interference from the communication systems. However, null space projection-type or spatial filtering-

type techniques might miss targets aligned with the the interference channel. In general, the existing literature on

radar-communication systems spectrum sharing addresses interference mitigation for either solely the communication

system [5]–[8] or solely the radar [9]. To the best of our knowledge, co-design of radar and communication systems

for spectrum sharing has not been addressed before, with the exception of our preliminary results in [1], [25]. In

practice, however, the two systems are often aware of the existence of each other, and they could share information,

which could be exploited for co-design. Recent developments in cognitive radios [26] and cognitive radars [27]

could provide the tools for information sharing and channel feedback, thus facilitating the cooperation between

radar and communication systems.

Motivated by the cooperative methods in cognitive radio networks [28]–[30], we propose ways via which a

MIMO-MC radar and a MIMO communication system, in a cooperative fashion, negotiate spectrum use in order
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to mitigate mutual interference. In addition to reducing communication bandwidth and power, MIMO-MC radars

offer a significant advantage for spectrum sharing. The advantage stems from the way the sampling scheme at the

radar receivers modulates the interference channel from the communication system transmitters, rendering it symbol

dependent and reducing its row space. This makes it easier for the communication system to design its waveforms in

an adaptive fashion so that it minimizes the interference to the radar subject to meeting rate and power constraints.

Two methods are proposed. The first method is a cooperative design; for a fixed radar sampling scheme, which is

known to the communication system, the communication system optimally selects its precoding matrix to minimize

the interference to the radar. The second method is a joint design, whereby the radar sampling scheme as well as

the communication system precoding matrix are optimally selected to minimize the interference to the radar. For

the first method, an efficient algorithm for solving the corresponding optimization problem is proposed based on the

Lagrangian dual decomposition (see Algorithm 1). For the second method, alternating optimization is employed to

solve the corresponding optimization problem. The candidate sampling scheme needs to be such that the resulting

data matrix can be completed. Recent work [31] showed that for matrix completion, the sampling locations should

correspond to a binary matrix with large spectral gap. Since the spectral gap of a matrix is not affected by column

and row permutations, we propose to search for the optimum sampling matrix among matrices which are row and

column permutations of an initial sampling matrix with large spectral gap.

The paper is organized as follows. Section III introduces the signal model when the MIMO-MC radar and

communication systems coexist. The problem of a MIMO communication system sharing the spectrum with a

MIMO-MC radar system is studied in Section IV. Numerical results, discussions and conclusions are provided in

Section V-VII.

Notation: CN (µ,Σ) denotes the circularly symmetric complex Gaussian distribution with mean µ and covariance

matrix Σ. | · |, Tr(·), ‖·‖∗ and ‖·‖F denote the matrix determinant, trace, nuclear norm and Frobenius norm,

respectively. The set N+
L is defined as {1, . . . , L}. N (A) and R(A) denote the null and row spaces of matrix A,

respectively. Ai· and A·j respectively, denote the i-th row and j-th column of matrix A. [A]i,j denotes the element

on the i-th row and j-th column of matrix A. x+ is defined as max(0, x).

II. BACKGROUND ON MIMO-MC RADARS

Consider a collocated MIMO radar system with Mt,R TX antennas and Mr,R RX antennas. The targets are in

the far-field of the antennas and are assumed to fall in the same range bin. The radar operates in two phases;

in the first phase the TX antennas transmit waveforms and the RX antennas receive target returns, while in the

second phase, the RX antennas forward their measurements to a fusion center. In each pulse, the m-th, m ∈ N+
Mt,R

,

antenna transmits a coded waveform containing L symbols {sm(1), · · · , sm(L)} of duration TR each. Each RX

antenna samples the target returns every TR seconds, i.e., samples each symbol exactly once. Following the model

of [20]–[22], the data matrix at the fusion center can be formulated as

YR = γρDS + WR, (1)
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where the m-th row of YR ∈ CMr,R×L contains the L samples forwarded by the m-th antenna; γ and ρ respectively

denote the path loss corresponding to the range bin of interest, and the radar transmit power; D ∈ CMr,R×Mt,R

denotes the target response matrix, which depends on the target reflectivity, angle of arrival and target speed (details

can be found in [21]); S = [s(1), · · · , s(L)], with s(l) = [s1(l), · · · , sMt,R
(l)]T being the l-th snapshot across the

transmit antennas. The transmit waveforms are assumed to be orthogonal, i.e., it holds thatSSH = I [21]; WR

denotes additive noise. After matched filtering at the fusion center, target estimation can be performed based on

YR via standard array processing schemes [32].

If the number of targets is smaller than Mr,R and L, matrix DS is low-rank and can be provably recovered based

on a subset of its entries [21], [23]. This observation gave rise to MIMO-MC radars [20]–[23], where each RX

antenna sub-samples the target returns and forwards the samples to the fusion center. The sampling scheme could

be a pseudo-random sequence of integers in [1, L], with the fusion center knowing the random seed of each RX

antenna. In MIMO-MC radars, the partially filled data matrix at the fusion center can be mathematically expressed

as follows (see [20], [21] Scheme I)

Ω ◦YR = Ω ◦ (γρDS + WR), (2)

where ◦ denotes Hadamard product and Ω is a matrix containing 0’s and 1’s; the 1’s in the m-th row correspond

to the sampled symbols of the m-th TR antenna. The sub-sampling rate, p, equals ‖Ω‖0/(LMr,R). When p = 1,

the Ω matrix is filled with 1’s, and the MIMO-MC radar is identical to the traditional MIMO radar. At the fusion

center, the completion of γρDS is formulated as the following optimization problem [33]

min
M
‖M‖∗ s.t. ‖Ω ◦M−Ω ◦YR‖F ≤ δ, (3)

where δ > 0 is a parameter related to the noise over the sampled noise matrix entries, i.e., Ω ◦WR. On denoting

by M̂ the solution of (3), the recovery error ‖M̂ − γρDS‖F is determined by the noise power in Ω ◦WR, i.e.,

the noise enters only through the sampled entries of the data matrix. It is important to note that, assuming that the

reconstruction error is small, the reconstructed M̂ has the same received target echo power as γρDS of (1).

Early studies on matrix completion theory suggested that the low-rank matrix reconstruction requires that the

entries are sampled uniformly at random. However, recent works [31] showed that non-uniform sampling would

still work, as long as the sampling matrix has large spectral gap (i.e., large gap between the largest and second

largest singular values).

III. SYSTEM MODEL

Consider a MIMO communication system which coexists with a MIMO-MC radar system as shown in Fig. 1,

sharing the same carrier frequency. The MIMO-MC radar operates in two phases, i.e., in Phase 1 the RX antennas

obtain measurements of the target returns, and in Phase 2, the RX antennas forward the obtained samples to a

fusion center. The communication system interferes with the radar system during both phases. In the following, we

will address spectrum sharing during the first phase only. The interference during the second phase can be viewed
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Collocated MIMO radar

Communication TX Communication RX

Fig. 1. A MIMO communication system sharing spectrum with a colocated MIMO radar system

as the interference between two communication systems; addressing this problem has been covered in the literature

[28], [29].

Suppose that the two systems have the same symbol rate and are synchronized in terms of sampling times (see

Section V for the mismatched case). We do not assume perfect carrier phase synchronization between the two

systems. The data matrix at the radar fusion center, and the received matrix at the communication RX antennas

during L symbol durations can be respectively expressed as

Radar fusion center:

Ω ◦YR = Ω ◦ (γρDS)︸ ︷︷ ︸
signal

+ Ω ◦ (G2XΛ2)︸ ︷︷ ︸
interference

+ Ω ◦WR︸ ︷︷ ︸
noise

, (4a)

Communication receiver:

YC = HX︸︷︷︸
signal

+ ρG1SΛ1︸ ︷︷ ︸
interference

+ WC︸︷︷︸
noise

, (4b)

where

• YR, ρ,D, S, WR, and Ω are defined in Section II.

• X , [x(1), . . . ,x(L)]; x(l) ∈ CMt,C×1 denotes the transmit vector by the communication TX antennas during

the l-th symbol duration. The rows of X are codewords from the code-book of the communication system.

• WC and WR denote the additive noise; their elements are assumed to be independent identically distributed

as CN (0, σ2
C) and CN (0, σ2

R), respectively.

• H ∈ CMr,C×Mt,C denotes the communication channel, where Mr,C and Mt,C denote respectively the number

of RX and TX antennas of the communication system; G1 ∈ CMr,C×Mt,R denotes the interference channel from

the radar TX antennas to the communication system RX antennas; G2 ∈ CMr,R×Mt,C denotes the interference

channel from the communication TX antennas to the radar RX antennas. All channels are assumed to be flat

fading and remain the same over L symbol intervals [5], [6], [8], [28].

• Λ1 and Λ2 are diagonal matrices. The l-th diagonal entry of Λ1, i.e., ejα1l , denotes the random phase offset

between the MIMO-MC radar carrier and the communication receiver reference carrier at the l-th sampling
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time. The l-th diagonal entry of Λ2, i.e., ejα2l , denotes the random phase offset between the communication

transmitter carrier and the MIMO-MC radar reference carrier at the l-th sampling time. The phase offsets arise

due to random phase jitter of the radar oscillator and the oscillator at the communication receiver Phase-Locked

Loops.

The following assumptions are made:

• About the radar waveforms- The radar waveforms are known at the communications transmitters. This as-

sumption can be easily relaxed, and the relaxation is addressed in [25].

• About the synchronization of sampling times- In the above model, we assume that the radar receivers and the

communication system sample in a time synchronous manner. Although this assumption is later relaxed in

Section V, we next provide an example of radar and communication parameter settings suggesting that the

aforementioned assumption is applicable in real world systems. The typical range resolution for an S-band

search and acquisition radar is between 100m and 600m [34], [35]. Thus, for range resolution of cTb/2 =

300m, where c = 3× 108m/s denotes the speed of light, the radar sub-pulse duration is Tb = 2µs. In order

to have identical symbol rate for two systems, the communication symbol duration should be 2µs, which

corresponds to signal bandwidth of 0.5 MHz. This symbol interval value falls in the typical range of symbol

interval values in LTE systems [36].

• About channel fading- The flat fading assumption for channels H, G1 and G2 would be valid when the channel

coherence bandwidth is larger than the signal bandwidth. Consider the symbol interval value 2µs and signal

bandwidth 0.5 MHz given above. In a LTE macro-cell, the coherence bandwidth is in the order of 1 MHz [36],

[37]. The typical values of LTE channel coherence bandwidth are much larger than the signal bandwidth of

0.5 MHz, thus making the flat fading channel assumption valid. Since the radar and communication systems

use the same carrier and signal bandwidth, the flat fading assumption is valid for all H, G1 and G2.

• About channel information feedback- The channels H, G1 and G2 are also assumed to be perfectly known

at the communication TX antennas. In practice, such channel information can be obtained at the radar RX

antennas through the transmission of pilot signals [5], [38]. Viewing the radar system as the primary user of

a cognitive radio system and the MIMO communication system as the secondary user, techniques similar to

those of [28]–[30], [39] can be used to estimate and feed back the channel information between the primary

and secondary systems.

• About the phase offsets- In the literature [40]–[42], the phase jitter α(t) is modeled as a zero-mean Gaussian

process. In this paper, we model {α1l}Ll=1 as a sequence of zero-mean Gaussian random variables with variance

σ2
α. Modern CMOS oscillators exhibit very low phase noise, e.g., −94 dB below the carrier power per Hz

(i.e., −94dBc/Hz) at an offset of 2π × 1 MHz, which yields phase jitter variance σ2
α ≈ 2.5× 10−3 [43].

Since it is assumed that the communication system knows the radar waveforms, the communication receivers

could eliminate some of the interference via direct subtraction. However, due to the high power of the radar [3]
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and the unknown phase offset, there will always be residual interference, i.e.,

ρG1S(Λ1 − I) ≈ ρG1SΛα,

where Λα = diag(jα11, · · · , jα1L), and the approximation is based on the fact that {α1l}Ll=1 are small. The signal

at the communication receiver after interference cancellation equals

ỸC = HX + ρG1SΛα + WC . (5)

This residual interference is not circularly symmetric, and thus the communication channel capacity is achieved

by non-circularly symmetric Gaussian codewords, whose covariance and complementary covariance matrix would

need to be designed simultaneously [44]. Here, we consider circularly symmetric complex Gaussian codewords

x(l) ∼ CN (0,Rxl), which achieve a lower bound of the channel capacity [44], [45]. This reduces the complexity

of the design since we only need to design the transmit covariance matrix Rxl.

The interference from the radar transmissions, i.e., ρG1SΛα, will reduce the communication system capacity,

while the interference from the communication system transmission, i.e., Ω◦(G2XΛ2) will degrade the completion

of the data matrix and as a result the target detection/estimation. One may argue that one could use spatial filtering

(as in [9]) at the radar to eliminate the communication system interference [9]. However, spatial filtering could not

be applied in the above MIMO-MC signal model, because only partial entries of the data matrix are available at the

radar receiver; to the best of our knowledge, this problem has not been addressed in the literature. Although one

could claim that the spatial filtering could be applied after recovering the data matrix via matrix completion, this

would not be possible, because the interference caused by the communication system would not allow for matrix

completion in the first place.

In the following section, we propose a design for the communication TX signals, or a co-design of the com-

munication TX signals and the radar sub-sampling scheme, so that we minimize the interference at the radar RX

antennas, while satisfying certain communication system rate requirements.

IV. SPECTRUM SHARING BETWEEN MIMO-MC RADAR AND A MIMO COMMUNICATION SYSTEM

First, let us provide expressions for the communication TX power and channel capacity, and the interference

power at the MIMO-MC radar receiver. The total transmit power of the communication TX antennas equals

E{Tr(XXH)} = E

{
Tr

(
L∑
l=1

x(l)xH(l)

)}
=

L∑
l=1

Tr(Rxl),

where Rxl , E{x(l)xH(l)}.
Due to the sampling performed at the MIMO-MC radar receiver, the effective interference power (EIP) at the
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radar RX nodes can be expressed as:

EIP , E
{

Tr
(
Ω ◦ (G2XΛ2) (Ω ◦ (G2XΛ2))

H
)}

=E
{

Tr
(
[G21x(1) . . .G2Lx(L)]Λ2Λ

H
2 [G21x(1) . . .G2Lx(L)]H

)}
=E

{
Tr

(
L∑

l=1

G2lx(l)x
H(l)GH

2l ]

)}

=

L∑
l=1

Tr
(
G2lRxlG

H
2l

)
=

L∑
l=1

Tr
(
∆lG2RxlG

H
2

)
,

(6)

where G2l , ∆lG2, with ∆l = diag(Ω·l). We note that the EIP at sampling time l contains the interference

corresponding only to 1’s in Ω·l. Thus, the effective interference channel during the l-th symbol duration is G2l. In

the following, the EIP is used as the figure of merit for MIMO-MC radars as it affects the performance of matrix

completion and further target estimation (see simulation results in Section VI-A). Before matrix completion and

any target estimation, the EIP should be minimized. From another perspective, the EIP is a reasonable surrogate

of the radar SINR, which is widely used as figure of merit in the literature [46], [47], as in this paper we do not

assume any prior information on target parameters.

In the coexistence model of (4a) and (5), both the effective interference channel G2l, and the interference

covariance matrix at the communication receiver, i.e., Rintl , ρ2σ2
αG1s(l)sH(l)GH

1 , vary between sampling times.

Thus, the optimum scheme for the communication transmitter would be adaptive/dynamic transmission. A symbol

dependent covariance matrix, i.e., Rxl, would need to be designed for each symbol duration in order to match the

variation of G2l and Rintl.

The channel G2l can be equivalently viewed as a fast fading channel with perfect channel state information at

both the transmitter and receiver [48], [49]. Similar to the definition of ergodic capacity [48], the achieved capacity

is the average over L symbols, i.e.,

Cavg({Rxl}) ,
1

L

∑L

l=1
log2

∣∣I + R−1wl HRxlH
H
∣∣ , (7)

where {Rxl} denotes the set of all Rxl’s and Rwl , Rintl + σ2
CI for all l ∈ N+

L .

The adaptive transmission could be implemented using the V-BLAST transmitter architecture [49, Chapter 7],

where the precoding matrix for symbol index l is set to R
1/2
xl . This idea is also used in the transceiver architecture

for achieving the capacity of a fast fading MIMO channel with full channel state information [49, Chapter 8.2.3],

and is also discussed in [50, Chapter 9]. The adaptive transmission in response to highly mobile, fast fading channels

requires the transmitter to vary the rate, power and even the coding strategy. The main bottleneck of the system

is not due to the complexity of designing and implementing the variable transmission parameters, but rather due

to the feedback delay of the fast fading channel. In our paper, the latter issue is not relevant because the channel

variations are introduced by the MC technique and radar waveforms, which are available at the communication

transmitter.

In this section, spectrum sharing between the communication system and the MIMO-MC radar is achieved by

minimizing the interference power at the MIMO-MC radar RX node, while satisfying the communication rate and
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TX power constraints of the communication system. The design variables are the communication TX covariance

matrices and/or the radar sub-sampling scheme. In the following we will consider two approaches, namely, a

cooperative and a joint design approach.

A. Cooperative Spectrum Sharing

In the cooperative approach, the MIMO-MC radar shares its sampling scheme Ω with the communication system.

The spectrum sharing problem can be formulated as

(P1) min
{Rxl}�0

EIP({Rxl}) s.t.
∑L

l=1
Tr (Rxl) ≤ Pt (8a)

Cavg({Rxl}) ≥ C, (8b)

where the constraint of (8a) restricts the total transmit power at the communication TX antennas to be no larger

than Pt. The constraint of (8b) restricts the communication average capacity during L symbol durations to be at

least C, in order to provide reliable communication and avoid service outage. {Rxl} � 0 imposes the positive

semi-definiteness on the solution.

Problem (P1) is convex and involves multiple matrix variables, the joint optimization with respect to which

requires high computational complexity. Fortunately, we observe that both the objective and constraints are separable

functions of {Rxl}. An efficient algorithm for solving the above problem can be implemented based on the

Lagrangian dual decomposition [51] as follows.

1) An Efficient Algorithm Based on Dual Decomposition: The Lagrangian of (P1) can be written as

L({Rxl}, λ1, λ2) =EIP({Rxl}) + λ2 (C − Cavg({Rxl}))

+λ1

(∑L

l=1
Tr (Rxl)− Pt

)
,

where λ1 ≥ 0 is the dual variable associated with the transmit power constraint, and λ2 ≥ 0 is the dual variable

associated with the average capacity constraint. The dual problem of (P1) is

(P1-D) max
λ1,λ2≥0

g(λ1, λ2),

where g(λ1, λ2) is the dual function defined as

g(λ1, λ2) = inf
{Rxl}�0

L({Rxl}, λ1, λ2).

The domain of the dual function, i.e., dom g, is λ1, λ2 ≥ 0 such that g(λ1, λ2) > −∞. It is also called dual feasible

if (λ1, λ2) ∈ dom g. It is interesting to note that g(λ1, λ2) can be obtained by solving L independent subproblems,

each of which can be written as follows

(P1-sub) min
Rxl�0

Tr
((

GH
2 ∆lG2 + λ1I

)
Rxl

)
− λ2 log2

∣∣I + R−1wl HRxlH
H
∣∣ . (9)

Before giving the solution of (P1-sub), let us first state some observations.
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Observation 1) The average capacity constraint should be active at the optimal point. This means that the achieved

capacity is always C and λ2 > 0. To show this, let us assume that the optimal point {R∗xl} achieves Cavg({R∗xl}) >

C. Then we can always shrink {R∗xl} until the average capacity reduces to C, which would also reduce the objective.

Thus, we end up with a contradiction. By complementary slackness, the corresponding dual variable is positive,

i.e., λ2 > 0.

Observation 2)
(
GH

2 ∆lG2 + λ1I
)

is positive definite for all l ∈ N+
L . This can be shown by contradiction. Suppose

that there exists l such that GH
2 ∆lG2 + λ1I is singular. Then it must hold that GH

2 ∆lG2 is singular and λ1 = 0.

Therefore, we can always find a nonzero vector v lying in the null space of GH
2 ∆lG2. At the same time, it holds

that R
−1/2
wl Hv 6= 0 with very high probability, because H is a realization of the random channel. If we choose

Rxl = αvvH and α → ∞, the Lagrangian L({Rxl}, 0, λ2) will be unbounded from below, which indicates that

λ1 = 0 is not dual feasible. This means that λ1 is strictly larger than 0 if GH
2 ∆lG2 is singular for any l. Thus,

the claim is proven.

Based on the above observations, we have the following lemma.

Lemma 1 ( [29], [30]). For given feasible dual variables λ1, λ2 ≥ 0, the optimal solution of (P1-sub) is given by

R∗xl(λ1, λ2) = Φ
−1/2
l UlΣlU

H
l Φ
−1/2
l , (10)

where Φl , GH
2 ∆lG2 + λ1I; Ul is the right singular matrix of H̃l , R

−1/2
wl HΦ

−1/2
l ; Σl = diag(βl1, . . . , βlr)

with βli = (λ2 − 1/σ2
li)

+, r and σli, i = 1, . . . , r, respectively being the rank and the positive singular vales of

H̃l. It also holds that

log2

∣∣I + R−1wl HR∗xlH
H
∣∣ =

∑r

i=1

(
log(λ2σ

2
li)
)+
. (11)

Based on Lemma 1, the solution of (P1) can be obtained by finding the optimal dual variables λ∗1, λ
∗
2. The

cooperative spectrum sharing problem (P1) can be solved via the procedure outlined in Algorithm 1.

Algorithm 1 Cooperative Spectrum Sharing (P1)

1: Input: H,G1,G2,Ω, Pt, C, σ
2
C

2: Initialization: λ1 ≥ 0, λ2 ≥ 0

3: repeat

4: Calculate R∗xl(λ1, λ2) according to (10) with the given λ1 and λ2;

5: Compute the subgradient of g(λ1, λ2) as
∑L
l=1 Tr (R∗xl(λ1, λ2))− Pt and C − Cavg({R∗xl(λ1, λ2)})

respectively for λ1 and λ2;

6: Update λ1 and λ2 accordingly based on the ellipsoid method [52];

7: until λ1 and λ2 converge to a prescribed accuracy.

8: Output: R∗xl = R∗xl(λ1, λ2)

Based on Lemma 1, the coexistence model can be equivalently viewed as a fast fading MIMO channel H̃l. The

covariance of the waveforms transmitted on H̃l is R̃xl , Φ
1/2
l RxlΦ

1/2
l . It is well-known that the optimum R̃xl
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equals UlΣlU
H
l with power allocation obtained by the water-filling algorithm [48]. The achieved capacity is the

average over all realization of the channel, i.e., {H̃l}Ll=1. This justifies the definition of average capacity in (7).

Lemma 1 shows that the communication transmitter will allocate more power to directions determined by the left

singular vectors of H corresponding to larger eigenvalues and by the eigenvectors of Φl corresponding to smaller

eigenvalues. In other words, the communication will transmit more power in directions that convey larger signal at

the communication receivers and smaller interferences to the MIMO-MC radars.

2) Spectrum Sharing without knowledge of the radar’s sampling scheme: If the MIMO-MC radar does not share

Ω with the communication system, the expression of EIP of (6) is also not available the communication system.

In this case, the communication system can design its covariance assuming that Ω is full of 1’s, i.e., for the worst

case of interference

(P0) min
{Rxl}�0

L∑
l=1

Tr
(
G2RxlG

H
2

)
s.t.

L∑
l=1

Tr (Rxl) ≤ Pt,Cavg({Rxl}) ≥ C.

(12)

The same design would hold for the case in which a traditional MIMO radar is used instead of a MIMO-MC radar.

Problem (P0) is also convex and has exactly the same constraints as (P1). The efficient algorithm based on the

dual decomposition technique in Algorithm 1 could also be applied to solve (P0).

The following theorem compares the minimum EIP achieved by the cooperative approaches of (P0) and (P1)

under the same communication constraints.

Theorem 1. For any Pt and C, the EIP achieved by the cooperative approaches of (P1) is less or equal than that

achieved by the approach of (P0).

Proof: Let {R∗0xl } and {R∗1xl } denote the solution of (P0) and (P1), respectively. We know that {R∗0xl } satisfies

the constraints in (P1), which means that {R∗0xl } is a feasible point of (P1). The optimal {R∗1xl } achieves an objective

value no larger than any feasible point, including {R∗0xl }. It holds that EIP({R∗1xl }) ≤ EIP({R∗0xl }), which proves

the claim.

There are certain scenarios in which (P1) outperforms (P0) significantly in terms of EIP. Let us denote by φ1

the intersection of N (G2l) and R(R
1/2
wl H), and by φ2 the intersection of N (G2) and R(R

1/2
wl H). It holds that

φ2 ⊆ φ1. Consider the case where φ1 is nonempty while φ2 is empty. This happens with high probability when

Mr,R ≥Mt,C but pMr,R is much smaller than Mt,C . Problem (P1) will guide the communication system to focus

its transmission power along the directions in φ1 to satisfy both communication system constraints, while introducing

zero EIP to the radar system. On the other hand, since φ2 is empty, Problem (P0) will guide the communication

system transmit power along directions that introduce nonzero EIP. In other words, the sub-sampling procedure in

the MIMO-MC radar essentially modulates the interference channel from the communication transmitter to the radar

receiver by multiplying {∆l}. Compared to the original interference channel G2, the dimension of the row space

of modulated channel G2l may be greatly reduced. The cooperative approach allows the communication system
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optimally design the communication precoding matrices with respect to the effective interference channel G2l.

Therefore, it is expected that the cooperative approach based on the knowledge of Ω, i.e., (P1), introduces smaller

EIP than its counterpart approach without knowledge of Ω, i.e., (P0), does under the same the communication

constraints.

B. Joint Communication and Radar System Design for Spectrum Sharing

In the above described spectrum sharing strategies, the MIMO-MC radar operates with a predetermined pseudo

random sampling scheme. In this section, we consider a joint design of the communication system transmit

covariance matrices and the MIMO-MC radar random sampling scheme, i.e., Ω. The candidate sampling scheme

needs to ensure that the resulting data matrix can be completed. This means that Ω is either a uniformly random

sub-sampling matrix [33], or a matrix with a large spectral gap [31].

Recall that EIP =
∑L
l=1 Tr

(
∆lG2RxlG

H
2

)
. The joint design scheme is formulated as

(P2) min
{Rxl}�0,Ω

∑L

l=1
Tr
(
∆lG2RxlG

H
2

)
s.t.

L∑
l=1

Tr (Rxl) ≤ Pt,Cavg({Rxl}) ≥ C,

∆l = diag(Ω·l),Ω is proper.

The above problem is not convex. A solution can be obtained via alternating optimization. Let ({Rn
xl},Ωn) be the

variables at the n-th iteration. We alternatively solve the following two problems:

{Rn
xl} = arg min

{Rxl}�0

∑L

l=1
Tr
(
∆n−1
l G2RxlG

H
2

)
, (13a)

s.t.
L∑
l=1

Tr (Rxl) ≤ Pt,Cavg({Rxl}) ≥ C,

Ωn = arg min
Ω

∑L

l=1
Tr
(
∆lG2R

n
xlG

H
2

)
, (13b)

s.t. ∆l = diag(Ω·l),Ω is proper.

The problem of (13a) is convex and can be solved efficiently. To avoid the intermediate variable {∆l}, we can

reformulate (13b) as

Ωn = arg min
Ω

Tr(ΩTQn) s.t. Ω is proper, (14)

where the l-th column of Qn contains the diagonal entries of G2R
n
xlG

H
2 . Recall that the sampling matrix Ω is

proper either if it is a uniformly random sampling matrix, or it has large spectral gap. However, it is difficult to

incorporate such conditions in the above optimization problem.

Noticing that row and column permutation of the sampling matrix would not affect its singular values and thus

the spectral gap, we propose to optimize the sampling scheme by permuting the rows and columns of an initial

sampling matrix Ω0, i.e.,

Ωn = arg min
Ω

Tr(ΩTQn) s.t. Ω ∈ ℘(Ω0), (15)
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where ℘(Ω0) denotes the set of matrices obtained by arbitrary row and/or column permutations. The Ω0 is generated

with binary entries and bpLMr,Rc ones. One good candidate for Ω0 would be a uniformly random sampling matrix,

as such matrix exhibit large spectral gap with high probability [31]. Brute-force search can be used to find the

optimal Ω. However, the complexity is very high since |℘(Ω0)| = Θ(Mr,R!L!). By alternately optimizing w.r.t.

row permutation and column permutation on Ω0, we can solve (15) using a sequence of linear assignment problems

[53].

To optimize w.r.t. column permutation, we need to find the best one-to-one match between the columns of Ω0 and

the columns of Qn. We construct a cost matrix Cc ∈ RL×L with [Cc]ml , (Ω0
·m)TQn

·l. The problem turns out to

be a linear assignment problem with cost matrix Cc, which can be solved in polynomial time using the Hungarian

algorithm [53]. Let Ωc denote the column-permutated sampling matrix after the above step. Then, we permute the

rows of Ωc to optimally match the rows of Qn. Similarly, we construct a cost matrix Cr ∈ RMr,R×Mr,R with

[Cr]ml , Ωc
m·(Q

n
l·)
T . Again, the Hungarian algorithm can be used to solve the row assignment problem. The

above column and row permutation steps are alternately repeated until Tr(ΩTQn) becomes smaller than a certain

predefined threshold δ1.

It is easy to show that the value of EIP decreases during the alternating iterations between (13a) and (13b). The

proposed algorithm stops when the value of EIP changes between two iterations drops below a certain threshold

δ2. The proposed joint-design spectrum sharing strategy is expected to further reduce the EIP at the MIMO-MC

radar RX node compared to the cooperative method in Section IV-A. The complete joint-design spectrum sharing

algorithm is summarized in Algorithm 2.

C. Complexity

The adaptive communication transmission in the proposed spectrum sharing methods involves high complexity.

A natural question would be how much would one lose by using a sub-optimal transmission approach of constant

rate, i.e., Rxl = · · · = RxL ≡ Rx, which has lower implementation complexity. In such case, the spectrum sharing

problem (P1) can be reformulated as

(P′1) min
Rx�0

EIP(Rx) s.t. LTr (Rx) ≤ Pt,Cavg(Rx) ≥ C, (16)

where EIP(Rx) , Tr
(
∆G2RxG

H
2

)
and ∆ is diagonal and with each entry equal to the sum of the entries in the

corresponding row of Ω. We can see that (P′1) is much easier to solve because there is only one matrix variable.

However, as it will be seen in the simulations of Section VI-B, the constant rate transmission based on solving (8)

is inferior to the adaptive transmission based on solving (16).

It is clear that (P0) and (P1) have the same computational complexity, because the objectives and the constraints

are similar. If an interior-point method [51] is used directly to the problems, the complexity is polynomial (cubic or

slightly higher orders) in the number of real variables in each problem. For both (P0) and (P1), the semidefinite

matrix variables {Rxl} have LM2
t,C real scalar variables. For the sub-optimal (P′1), there is only one semidefinite

matrix variable Rx, which results in M2
t,C real scalar variables. Therefore, the computational costs of (P0) and
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Algorithm 2 Joint design based spectrum sharing between MIMO-MC radar and a MIMO comm. system
1: Input: H,G1,G2, Pt, C, σ

2
C , δ1, δ2

2: Initialization: Ω0 is a uniformly random sampling matrix

3: repeat

4: {Rn
xl} ← Solve problem (13a) using Algorithm 1 while fixing Ωn−1

5: Ωprev ← Ωn−1

6: loop

7: Ωc ← Find the best column permutation of Ωprev by solving the linear assignment problem with cost

matrix Cc

8: Ωr ← Find the best row permutation of Ωc by solving the linear assignment problem with cost matrix

Cr

9: if |Tr((Ωr)TQn)− Tr((Ωprev)TQn)| < δ1 then

10: Break

11: end if

12: Ωprev ← Ωr

13: end loop

14: Ωn ← Ωr; n← n+ 1

15: until |EIPn − EIPn−1| < δ2

16: Output: {Rxl} = {Rn
xl},Ω = Ωn

(P1) are at least L3 times of that of (P′1), which are prohibitive if L is large. Fortunately, when (P0) and (P1)

are solved using Algorithm 1 based on dual decomposition, the computation complexity is greatly reduced and

scales linearly with L. Furthermore, the overall computation time of (P0) and (P1) using dual decomposition even

becomes independent of L and thus equal to that of (P′1) if all L sub-problems (P1-sub) are solved simultaneously

in parallel using the same computational routine [28].

To solve (P2), several iterations of solving problems in (13a) and (13b) are required. The computational

complexity of (13a) is identical to that of (P1), which has been considered previously. Problem (13b) is in turn

solved via several iterations of linear assignment problem, whose complexity cubically scales with L. Simulations

show that the numbers of both inner and outer iterations in Algorithm 2 are relative small. In summary, the

computational complexity of (P2) is the sum of L times of a polynomial of M2
t,C and O(L3).

V. MISMATCHED SYSTEMS

In Section III, the waveform symbol duration of the radar system is assumed to match that of the communication

system. In this section, we consider the mismatched case, and show that the proposed techniques presented in the

previous sections can still be applied. Let fRs = 1/TR and fCs denote the radar waveform symbol rate and the
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communication symbol rate, respectively. Also, let the length of radar waveforms be denoted by LR. The number of

communication symbols transmitted in the duration of LR/fRs is LC , dLRfCs fRs e. The communication average

capacity and transmit power can be expressed in terms of {Rxl}LC

l=1 as in Section IV. In the following, we will

only focus on the effective interference to the MIMO-MC radar receiver.

If fRs < fCs , the interference arrived at the radar receiver will be down-sampled. Let I1 ⊂ N+
LC

be the set

of indices of communication symbols that are sampled by the radar in ascending order. It holds that |I1| = LR.

Following the derivation in previous sections, we have the following interference power expression:

EIP =
∑

l∈I1
Tr
(
∆l′G2RxlG

H
2

)
,

where l′ ∈ N+
LR

is the index of l in ordered set I1. We observe that the communication symbols indexed by N+
LC
\I1,

which are not sampled by the radar receiver, would introduce zero interference power to the radar system.

If fRs > fCs , the interference at the radar receiver will be over-sampled. One individual communication symbol

will introduce interference to the radar system in bfRs /fCs c consecutive symbol durations. Let Ĩl be the set of

radar sampling time instances during the period of the l-th communication symbol. Note that Ĩl is with cardinality

bfRs /fCs c, and the collection of sets Ĩ1, . . . , ĨLC
is a partition of N+

LR
. The effective interference power for both

schemes of MIMO-MC radar is respectively

EIP =
∑LC

l=1
Tr
(
∆̃lG2RxlG

H
2

)
,

where ∆̃l =
∑
l′∈Ĩl ∆l′ . We observe that each individual communication transmit covariance matrix will be

weighted by the sum of interference channels for bfRs /fCs c radar symbol durations instead of one single interference

channel.

We conclude that in the above mismatched cases, the EIP expressions have the same form as those in the matched

case except the diagonal matrix ∆l. To calculate the corresponding diagonal matrices, the communication system

only needs to know the sampling time of the radar system. Therefore, the spectrum sharing problems in such cases

can still be solved using the proposed algorithms of Section IV.

VI. NUMERICAL RESULTS

For the simulations, we set the number of symbols to L = 32 and the noise variance to σ2
C = 0.01. The

MIMO radar system consists of colocated TX and RX antennas forming half-wavelength uniform linear arrays, and

transmitting Gaussian orthogonal waveforms [20]. The channel H is taken to have independent entries, distributed as

CN (0, 1). The interference channels G1 and G2 are generated with independent entries, distributed as CN (0, σ2
1)

and CN (0, σ2
2), respectively. We fix σ2

1 = σ2
2 = 0.01 unless otherwise stated. The maximum communication

transmit power is set to Pt = L (the power is normalized w.r.t. the power of radar waveforms). The propagation

path from the radar TX antennas to the radar RX antennas via the far-field target introduces a much more severe

loss of power, γ2, which is set to −30dB in the simulations. The transmit power of the radar antennas is fixed

to ρ2 = ρ0 , 1000L/Mt,R unless otherwise stated, and noise in the received signal is added at SNR= 25dB.
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The phase jitter variance is taken to be σ2
α = 10−3. The same uniformly random sampling scheme Ω0 is adopted

by the radar in both the cooperative spectrum sharing (SS) methods of (P0) and (P1). The joint-design spectrum

sharing method uses the same sampling matrix as its initial sampling matrix. Recall that (P0) is the cooperative

spectrum sharing method when Ω is not shared with the communication system. In (P0), the communication system

designs its waveforms by assuming Ω as the all 1’s matrix. Based on the obtained communication waveforms, an

EIP value is calculated for (P0) using the true Ω for the ease of comparison. In the following figures, we denote

the cooperative spectrum sharing method of (P0) without knowledge of Ω by “cooperative SS w/o knowledge of

Ω”. We denote the cooperative spectrum sharing method of (P1) by “cooperative SS”; and denote the joint-design

spectrum sharing method of (P2) by “joint-design SS”. The TFOCUS package [54] is used for low-rank matrix

completion at the radar fusion center. The communication covariance matrix is optimized according to the criteria

of Section IV. The obtained Rxl is used to generate x(l) = R
1/2
xl randn(Mt,C , 1). We use the EIP and MC relative

recovery error as the performance metrics. The relative recovery error is defined as ‖DS− D̂S‖F /‖DS‖F , where

D̂S is the completed result of DS. For comparison, we also implement a “selfish communication” scenario, where

the communication system minimizes the transmit power to achieve certain average capacity without any concern

about the interferences it exerts to the radar system.
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Fig. 2. MC relative recovery errors and target angle estimation success rates under different levels of EIP for the MIMO-MC radar. Mt,R =

16,Mr,R = 32,Mt,C = 4,Mr,C = 4.

A. The Impact of EIP on Matrix Completion and Target Angle Estimation

In the following we provide simulation results in support of the use of EIP as a design objective. We take

Mt,R = 16,Mr,R = 32,Mt,C = 4,Mr,C = 4. We consider two far-field targets at angle 30◦ and 32.5◦ w.r.t. the

radar arrays, with target reflection coefficients equal to 0.2 + 0.1j. The sub-sampling rate of MIMO-MC radar is

fixed to 0.5. We simulate different levels of EIP by setting the communication TX covariance matrices equal to

identity matrix and varying a scaling parameter. In Fig. 2, we show the MC relative recovery errors and target angle

estimation success rates under different levels of EIP. The angle estimation is achieved by the MUSIC method based

on 5 pulses [21]. A success occurs if the angle estimation error is smaller than 0.25◦. The results are calculated

based on 200 independent trials. One can see that the EIP indeed greatly affects the matrix completion accuracy
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and further the target angle estimation. In particular, a 0.5 unit increase of EIP causes a sharp 30% drop of the

target angle estimation success rate. Therefore, in order to guarantee the function of the MIMO-MC radar, the EIP

has to be maintained at a small level.

B. Spectrum Sharing Based on Adaptive Transmission and Constant Rate Transmission
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Fig. 3. Spectrum sharing based on adaptive transmission and constant rate transmission for the MIMO-MC radar. Mt,R = 4,Mr,R =Mt,C =

8,Mr,C = 4.

In this simulation, we compare the performance of the cooperative scheme of (P1) based on adaptive transmission

and the constant rate transmission scheme of (P′1). We also implement the selfish communication scenario using

constant rate transmission. We take Mt,R = 4,Mr,R = Mt,C = 8,Mr,C = 4, and one far-field stationary target at

angle 30◦ w.r.t. the radar arrays, with target reflection coefficient equal to 0.2+0.1j. For the communication capacity

constraint, we consider C = 12 bits/symbol. Fig. 3 shows the EIP and MC relative recovery error as functions of the

sub-sampling rate at the MIMO-MC radar. We observe that the cooperative scheme of (P1) (labeled as “Cooperative

SS + Adaptive”) achieves much smaller EIP and MC errors than the constant rate transmission scheme of (P′1)

(labeled as “Cooperative SS + Const. Rate”) does. It can also be seen that the constant rate transmission scheme

is inferior even to the adaptive transmission based selfish communication scheme. This implies that the adaptive

transmission technique plays an important role in reducing the EIP and MC errors. In the following, the performance

of adaptive transmission based schemes is evaluated in more detail. As we already mentioned in Section II, when

the sub-sampling rate p equals 1, the MIMO-MC radar becomes the traditional MIMO radar. Therefore, the above

comparison between the adaptive and the constant rate transmission scheme for MIMO-MC radars also holds for

traditional MIMO radars.

C. Spectrum Sharing between a MIMO-MC radar and a MIMO Communication System

1) Performance under different sub-sampling rates: There is a far-field stationary target at angle 30◦ w.r.t. the

radar arrays, with target reflection coefficient equal to 0.2 + 0.1j. For the communication capacity constraint, we

consider C = 12 bits/symbol. The sub-sampling rate of MIMO-MC radar varies from 0.2 to 1. The following two

scenarios are considered.
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Fig. 4. Spectrum sharing with the MIMO-MC radar under different sub-sampling rates. Mt,R = 4,Mr,R = Mt,C = 8,Mr,C = 4. Dashed

curves correspond to EIP results using different realization of Ω0.
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Fig. 5. Spectrum sharing with the MIMO-MC radar under different sub-sampling rates. Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4.

Dashed curves correspond to EIP results using different realization of Ω0.

In the first scenario, we take Mt,R = 4,Mr,R = Mt,C = 8,Mr,C = 4. In Fig. 4(a) we plot the EIP results for 4

different realizations of Ω0. For better visualization, Fig. 4(b) shows the relative recovery errors averaged over all 4

realizations of Ω0. The cooperative scheme (see P1) outperforms its counterpart without knowledge of Ω (see P0)

in terms of both the EIP and the MC relative recovery error. As discussed in Section IV, the EIP is significantly

reduced by the cooperative method when p < 0.6, i.e., when pMr,R is much smaller than Mt,C . The joint-design

scheme in this scenario performs the same as the cooperative scheme, possibly because the row dimension of Ω is

too small to generate sufficient difference in EIP among the various permutations of Ω.

In the second scenario, we take Mt,R = 16,Mr,R = 32,Mt,C = 4,Mr,C = 4. In Fig. 5(a), we plot the EIP

corresponding to 4 different realizations of Ω0, taken as uniformly random sampling matrices. Again, Fig. 5(b)

shows the relative recovery errors averaged over all 4 realizations of Ω0. The cooperative scheme outperforms the

cooperative scheme without knowledge of Ω only marginally. This is due to the fact that both G2 and G2l are full

rank. The joint-design scheme (see Section IV-B) optimizes Ω starting from the same sampling matrix used by the

other three methods. In this case, the joint-design scheme achieves smaller EIP and relative recovery errors than

the other three methods.

We should note that when p decreases, the null space of G2l expands with high probability, and the EIP of

the cooperative scheme decreases. However, if p is too small, the MC recovery at the fusion center fails. In the
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above scenarios, we would like p ≥ 0.4 for a small relative recovery error in matrix completion. However, values

of p > 0.6 require more samples while achieving little, or even no improvement on the relative recovery error.

Therefore, the optimal range of p is [0.4, 0.6], where the proposed joint-design scheme reduces the EIP by at least

20% over the “selfish communication method”. In conclusion, the sub-sampling procedure in MIMO-MC radar is

beneficial in terms of reducing the effective interference power from the communication system as well as reducing

the amount of data to be sent to the fusion center. In addition, simulations indicate that the communication average

capacity constraint holds with equality in both scenarios, confirming observation (1) of Section IV-A.
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Fig. 6. Spectrum sharing with the MIMO-MC radar under different capacity constraints C. Mt,R = 4,Mr,R = Mt,C = 8,Mr,C = 4.

Dashed curves correspond to EIP results using different realization of Ω0.
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Fig. 7. Spectrum sharing with the MIMO-MC radar under different capacity constraints C. Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4.

Dashed curves correspond to EIP results using different realization of Ω0.

2) Performance under different capacity constraints: In this simulation, the constant C in the communication

capacity constraint of (8b) varies from 6 to 14 bits/symbol, while the sub-sampling rate p is fixed to 0.5. Four

different realizations of Ω0 are considered. Fig. 6 shows the results for Mt,R = 4,Mr,R = Mt,C = 8,Mr,C = 4.

For the “selfish communication” scheme and the cooperative scheme without knowledge of Ω, the EIP and relative

recovery errors increase as the communication capacity increases. In contrast, the cooperative and joint-design

schemes achieve significantly smaller EIP and relative recovery errors under all values of C. This indicates that

the latter two spectrum sharing methods successfully allocate the communication transmit power in directions that

result in high communication rate, but small EIP to the MIMO-MC radar.
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Fig. 8. Spectrum sharing with the MIMO-MC radar when multiple targets present. Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4, p = 0.5

and C = 12 bits/symbol.

The results for Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4 are shown in Fig. 7. Since Mr,R is much larger than

Mt,C , the cooperative scheme with the knowledge of Ω outperforms its counterpart without knowledge of Ω only

marginally. Meanwhile, the joint-design scheme can effectively further reduce the EIP and relative recovery errors.

3) Performance under different number of targets: In this simulation, we fix p = 0.5 and C = 12 and evaluate the

performance when multiple targets are present. The target reflection coefficients are designed such that the target

returns have fixed power, independent of the number of targets. We observe that the EIPs of different methods

remain constant for different number of targets. This is because the design of the communication waveforms is not

affected by the target number. Fig. 8 shows the results of the relative recovery error, which increases as the number

of targets increases. All methods have large recovery error for large number of targets, because the retained samples

are not sufficient for reliable matrix completion under any level of noise. The proposed joint-design scheme can

work effectively for the MIMO-MC radar when a moderate number of targets are present.
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Fig. 9. Spectrum sharing with the MIMO-MC radar under different levels of radar TX power. Mt,R = 16,Mr,R = 32,Mt,C =Mr,C = 4.

4) Performance under different levels of radar TX power: In this simulation, we evaluate the effect of radar

TX power ρ2, while fixing p = 0.5, C = 12 and the target number to be 1. Fig. 9 shows the results of EIP and

relative recovery errors for Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4. Again, we see that the joint-design scheme

performs the best, followed by the cooperative scheme with the knowledge of Ω and then the cooperative scheme
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without knowledge of Ω. When the radar TX power increases, the EIP increases but with a much slower rate.

Therefore, increasing the radar TX power improves the relative recovery errors.
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Fig. 10. Spectrum sharing with the MIMO-MC radar under different channel variance σ2
1 for the interference channel G1. Mt,R = 16,Mr,R =

32,Mt,C =Mr,C = 4.

5) Performance under different interference channel strength: In this simulation, we evaluate the effect the

interference channel G1 with different σ2
1 , while fixing p = 0.5, C = 12 and the target number to be 1. As the

communication RX gets closer to the radar TX antennas, σ2
1 gets larger. Fig. 10 shows the results of EIP and

relative recovery errors for Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4. For all the spectrum sharing methods, when

the interference channel G1 gets stronger, the communication TX increases its transmit power in order to satisfy

the capacity constraint. Therefore, the EIP and the relative recovery errors increases with the variance σ2
1 . We also

observe that the joint-design scheme performs the best, followed by the cooperative scheme with the knowledge of

Ω and then the cooperative scheme without knowledge of Ω.

VII. CONCLUSIONS

This paper has considered spectrum sharing between a MIMO communication system and a MIMO-MC radar

system. In order to reduce the effective interference power (EIP) at radar RX antennas, we have first considered the

cooperative spectrum sharing method, which designs the communication transmit covariance matrix based on the

knowledge of the radar sampling scheme. We have also formulated the spectrum sharing method for the case where

the radar sampling scheme is not shared with the communication system. Our theoretical results guarantee that the

cooperative approach can effectively reduce the EIP to a larger extent as compared to the spectrum sharing method

without the knowledge of the radar sampling scheme. Second, we have proposed a joint design of the communication

transmit covariance matrix and the radar sampling scheme to further reduce the EIP. The EIP reduction and the

matrix completion recovery errors have been evaluated under various system parameters. We have shown that the

MIMO-MC radars enjoy reduced interference by the communication system when the proposed spectrum sharing

methods are considered. In particular, the sparse sampling at the radar RX antennas can reduce the rank of the

interference channel. Our simulations have confirmed that significant EIP reduction is achieved by the cooperative

approach; this is because in that approach, the communication power is allocated to directions in the null space of
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the effective interference channel. Our simulations have suggested that the joint-design scheme can achieve much

smaller EIP and relative recovery errors than other methods when the number of radar TX and RX antennas is

moderately large.

The adaptive communication transmission has been shown to be the optimal scheme for the considered spectrum

sharing scenario. Compared to the constant rate transmission, the adaptive transmission requires higher computational

and implementation complexity. To reduce the computation complexity, efficient algorithms have been provided

based on the Lagrangian dual decomposition. As more and more powerful digital signal processors are used in

modern communication terminals, advanced adaptive transmission approaches ought to weigh heavily due to the

increasing demand on high spectral efficiency. Nevertheless, the adaptive transmission approach considered in the

paper provides useful insights on the optimal design of the MIMO communication system coexisting with MIMO-

MC radars, which deserves research attention despite the computational and implementation complexity.

REFERENCES

[1] B. Li and A. P. Petropulu, “Spectrum sharing between matrix completion based MIMO radars and a MIMO communication system,” in

IEEE International Conference on Acoustics, Speech and Signal Processing, April 2015, pp. 2444–2448.

[2] “Radar spectrum regulatory overview,” [online] 2013, http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147486331, (Accessed:

July 2014).

[3] F. H. Sanders, R. L. Sole, J. E. Carroll, G. S. Secrest, and T. L. Allmon, “Analysis and resolution of rf interference to radars operating

in the band 2700–2900 MHz from broadband communication transmitters,” US Dept. of Commerce, Tech. Rep. NTIA Technical Report

TR-13-490, 2012.

[4] A. Lackpour, M. Luddy, and J. Winters, “Overview of interference mitigation techniques between WiMAX networks and ground based

radar,” in 20th Annual Wireless and Optical Communications Conference, April 2011, pp. 1–5.

[5] S. Sodagari, A. Khawar, T. C. Clancy, and R. McGwier, “A projection based approach for radar and telecommunication systems coexistence,”

in IEEE Global Telecommunication Conference, Dec 2012, pp. 5010–5014.

[6] A. Babaei, W. H. Tranter, and T. Bose, “A practical precoding approach for radar/communications spectrum sharing,” in 8th International

Conference on Cognitive Radio Oriented Wireless Networks, July 2013, pp. 13–18.

[7] S. Amuru, R. M. Buehrer, R. Tandon, and S. Sodagari, “MIMO radar waveform design to support spectrum sharing,” in IEEE Military

Communication Conference, Nov 2013, pp. 1535–1540.

[8] A. Khawar, A. Abdel-Hadi, and T. C. Clancy, “Spectrum sharing between S-band radar and LTE cellular system: A spatial approach,” in

IEEE International Symposium on Dynamic Spectrum Access Networks,, April 2014, pp. 7–14.

[9] H. Deng and B. Himed, “Interference mitigation processing for spectrum-sharing between radar and wireless communications systems,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 3, pp. 1911–1919, July 2013.

[10] A. Aubry, A. De Maio, M. Piezzo, and A. Farina, “Radar waveform design in a spectrally crowded environment via nonconvex quadratic

optimization,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 2, pp. 1138–1152, 2014.

[11] A. Aubry, A. De Maio, Y. Huang, M. Piezzo, and A. Farina, “A new radar waveform design algorithm with improved feasibility for

spectral coexistence,” IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 2, pp. 1029–1038, April 2015.

[12] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, “MIMO radar: an idea whose time has come,” in Proceedings

of the IEEE Radar Conference, April 2004, pp. 71–78.

[13] J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 106–114, 2007.

[14] J. Li, P. Stoica, L. Xu, and W. Roberts, “On parameter identifiability of MIMO radar,” IEEE Signal Processing Letters, vol. 14, no. 12,

pp. 968–971, Dec 2007.

[15] C. Chen and P. P. Vaidyanathan, “MIMO radar space time adaptive processing using prolate spheroidal wave functions,” IEEE Transactions

on Signal Processing, vol. 56, no. 2, pp. 623–635, Feb 2008.

October 29, 2015 DRAFT



23

[16] C. Chen and P. P. Vaidyanathan, “MIMO radar ambiguity properties and optimization using frequency-hopping waveforms,” IEEE

Transactions on Signal Processing, vol. 56, no. 12, pp. 5926–5936, 2008.

[17] M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Transactions on Signal Processing, vol. 57, no.

6, pp. 2275–2284, June 2009.

[18] Y. Yu, A. P. Petropulu, and H. V. Poor, “MIMO radar using compressive sampling,” IEEE Journal of Selected Topics in Signal Processing,

vol. 4, no. 1, pp. 146–163, Feb 2010.

[19] M. Rossi, A. M. Haimovich, and Y. C. Eldar, “Spatial compressive sensing for MIMO radar,” IEEE Transactions on Signal Processing,

vol. 62, no. 2, pp. 419–430, Jan 2014.

[20] S. Sun, A. P. Petropulu, and W. U. Bajwa, “Target estimation in colocated MIMO radar via matrix completion,” in IEEE International

Conference on Acoustics, Speech and Signal Processing, May 2013, pp. 4144–4148.

[21] S. Sun, W. Bajwa, and A. P. Petropulu, “MIMO-MC radar: A MIMO radar approach based on matrix completion,” Aerospace and

Electronic Systems, IEEE Transactions on, vol. 51, no. 3, pp. 1839–1852, July 2015.

[22] D. S. Kalogerias and A. P. Petropulu, “Matrix completion in colocated MIMO radar: Recoverability, bounds and theoretical guarantees,”

IEEE Transactions on Signal Processing, vol. 62, no. 2, pp. 309–321, Jan 2014.

[23] S. Sun and A. P. Petropulu, “Waveform design for MIMO radars with matrix completion,” IEEE Journal of Selected Topics in Signal

Processing, vol. PP, no. 99, pp. 1–1, December 2015.

[24] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to basis mismatch in compressed sensing,” IEEE Transactions on

Signal Processing,, vol. 59, no. 5, pp. 2182–2195, May 2011.

[25] B. Li and A. P. Petropulu, “Radar precoding for spectrum sharing between matrix completion based MIMO radars and a MIMO

communication system,” in IEEE Global Conference on Signal and Information Processing, December 2015.

[26] K. Letaief and W. Zhang, “Cooperative communications for cognitive radio networks,” Proceedings of the IEEE, vol. 97, no. 5, pp.

878–893, May 2009.

[27] S. Haykin, “Cognitive radar: a way of the future,” IEEE Signal Processing Magazine, vol. 23, no. 1, pp. 30–40, Jan 2006.

[28] R. Zhang and Y. Liang, “Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks,” IEEE Journal of

Selected Topics in Signal Processing, vol. 2, no. 1, pp. 88–102, Feb 2008.

[29] R. Zhang, Y. Liang, and S. Cui, “Dynamic resource allocation in cognitive radio networks,” IEEE Signal Processing Magazine, vol. 27,

no. 3, pp. 102–114, May 2010.

[30] S. J. Kim and G. B. Giannakis, “Optimal resource allocation for MIMO ad hoc cognitive radio networks,” IEEE Transactions on

Information Theory, vol. 57, no. 5, pp. 3117–3131, May 2011.

[31] S. Bhojanapalli and P. Jain, “Universal matrix completion,” in Proceedings of The 31st International Conference on Machine Learning,

2014, pp. 1881–1889.

[32] H. Krim and M. Viberg, “Two decades of array signal processing research: The parametric approach,” IEEE Signal Processing Magazine,

vol. 13, no. 4, pp. 67–94, 1996.

[33] E. J. Candes and Y. Plan, “Matrix completion with noise,” Proceedings of the IEEE, vol. 98, no. 6, pp. 925–936, June 2010.

[34] C. Kopp, “Search and acquisition radars (S-band, X-band),” Technical Report APA-TR-2009-0101, [online] 2009, http://www.ausairpower.

net/APA-Acquisition-GCI.html, (Accessed: July 2015).

[35] “Radar performance,” Radtec Engineering Inc., [online], http://www.radar-sales.com/PDFs/Performance\ RDR\%26TDR.pdf, (Accessed:

July 2015).

[36] Telesystem Innovations, “LTE in a nutshell: The physical layer,” White paper, 2010.

[37] R. P. Jover, “LTE PHY fundamentals,” [online], http://www.ee.columbia.edu/∼roger/LTE\ PHY\ fundamentals.pdf, (Accessed: July

2015).

[38] M. Filo, A. Hossain, A. R. Biswas, and R. Piesiewicz, “Cognitive pilot channel: Enabler for radio systems coexistence,” in 2nd International

Workshop on Cognitive Radio and Advanced Spectrum Management, May 2009, pp. 17–23.

[39] L. Lu, X. Zhou, U. Onunkwo, and G. Y. Li, “Ten years of research in spectrum sensing and sharing in cognitive radio.,” EURASIP J.

Wireless Comm. and Networking, vol. 2012, pp. 28, 2012.

[40] F. M. Gardner, Phaselock techniques, John Wiley & Sons, 2005.

[41] R. Poore, “Phase noise and jitter,” Agilent EEs of EDA, 2001.

October 29, 2015 DRAFT



24

[42] R. Mudumbai, G. Barriac, and U. Madhow, “On the feasibility of distributed beamforming in wireless networks,” IEEE Transactions on

Wireless Communications, vol. 6, no. 5, pp. 1754–1763, 2007.

[43] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE Journal of Solid-State Circuits, vol. 31, no. 3, pp. 331–343, 1996.

[44] G. Taubock, “Complex-valued random vectors and channels: entropy, divergence, and capacity,” IEEE Transactions on Information Theory,

vol. 58, no. 5, pp. 2729–2744, 2012.

[45] S. N. Diggavi and T. M. Cover, “The worst additive noise under a covariance constraint,” IEEE Transactions on Information Theory, vol.

47, no. 7, pp. 3072–3081, Nov 2001.

[46] C. Chen and P. P. Vaidyanathan, “Mimo radar waveform optimization with prior information of the extended target and clutter,” IEEE

Transactions on Signal Processing, vol. 57, no. 9, pp. 3533–3544, 2009.

[47] G. Cui, H. Li, and M. Rangaswamy, “Mimo radar waveform design with constant modulus and similarity constraints,” IEEE Transactions

on Signal Processing, vol. 62, no. 2, pp. 343–353, 2014.

[48] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE Journal on Selected Areas in

Communications, vol. 21, no. 5, pp. 684–702, 2003.

[49] D. Tse and P. Viswanath, Fundamentals of wireless communication, Cambridge university press, 2005.

[50] A. Goldsmith, Wireless communications, Cambridge university press, 2005.

[51] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge university press, 2004.

[52] R. G. Bland, D. Goldfarb, and M. J. Todd, “The ellipsoid method: A survey,” Operations research, vol. 29, no. 6, pp. 1039–1091, 1981.

[53] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[54] S. R. Becker, E. J. Candès, and M. C. Grant, “Templates for convex cone problems with applications to sparse signal recovery,” Mathematical

Programming Computation, vol. 3, no. 3, pp. 165–218, 2011.

October 29, 2015 DRAFT


