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Abstract

The paper proposes a cooperative spectrum sharing scheme for a MIMO communication system and a matrix

completion (MC) based, colocated MIMO (MIMO-MC) radar. MIMO-MC radars perform sub-Nyquist sampling at

the receive antennas. To facilitate the co-existence, and also deal with clutter, both the radar and the communication

systems use transmit precoding. For waveform flexibility, the radar uses a random unitary waveform matrix. We prove

that for such waveforms and any precoding matrix, the error performance of matrix completion is guaranteed. The

radar transmit precoder, the radar sub-sampling scheme, and the communication transmit covariance matrix are jointly

designed in order to maximize the radar SINR, while meeting certain communication rate and power constraints. The

joint design is implemented at a control center, which is a node with whom both systems share physical layer

information, and which also performs data fusion for the radar. We also provide efficient optimization algorithms

for the proposed optimization problem, along with insight on the feasibility and properties of the proposed design.

Simulation results show that the proposed scheme significantly improves the spectrum sharing performance in various

scenarios.

Index Terms

MIMO radar, matrix completion, spectrum sharing, precoding, alternating optimization, co-existence

I. INTRODUCTION

Traditionally, communication and radar systems use the radio spectrum in an exclusive fashion. However, recent

studies have shown that large chunks of spectrum designated for radar applications are underutilized [1], while

there is spectrum congestion in commercial wireless communications. Recently, there has been interest in enabling

radar and communication system to operate in the same frequency band, so that both can make more efficient use

of spectrum [2], [3]. Currently, high UHF radar systems overlap with GSM communication systems, and S-band

radars partially overlap with Long Term Evolution (LTE) and WiMax systems [4]–[7]. The main problem with such
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overlap is the interference that one system exerts to the other, which can be significant even for low levels of the

interfering signal. According to [8], levels of interference to noise ratio below the thermal noise floor level of the

radar receiver can reduce the probability of target detection. Also, the interference generated by the radar reduces

the throughput of a communication system operating nearby. Spectrum sharing methods target at enabling radar

and communication systems to share the spectrum efficiently by minimizing interference effects. The literature on

spectrum sharing can be classified into three main classes. Works in the first class explore large physical separation

distances [5], [6], [9] to control interference. Works in the second class explore dynamic spectrum access [10]–

[14] by using OFDM signals and optimally allocating subcarriers [15]–[17], or synthesize radar waveforms in the

frequency domain with controlled interference to the spectrally overlayed wireless communication systems [18]–

[21]. However, these works do not explore the spatial degree of freedom that would greatly reduce the mutual

interference. This of course would require multiple antennas at both systems. Works in the third class exploit

multiple antennas at both the radar and the communication system, in order to enable radar and communication

systems to co-exist on the same frequency band [7], [22]–[27], thus improving spectral efficiency as compared to

the other two classes. Since our proposed method falls in this category, we will discuss this class in more detail.

Most of the existing multiple-input-multiple-output (MIMO) radar-communication spectrum sharing literature

addresses interference mitigation either for the communication system [7], [22]–[24], or for the radar [27]. Spectrum

sharing between MIMO radars and communication systems was initially considered in [7], [22]–[26], where the

radar interference to the communication system was eliminated by projecting the radar waveforms onto the null

space of the interference channel. However, projection-type techniques might miss targets lying in the row space

of the interference channel. In addition, the interference generated by the communication system to the radar was

not considered in [7], [22]–[26]. Spatial filtering at the radar receiver was proposed in [27] to reduce interference.

In the above literature, spatial multiplexing has been applied to each system in isolation, missing out on potential

performance improvements from a coordinated operation of the two systems. Recent advances in cognitive radio and

cloud technology, provide a framework via which different systems achieve improved performance by coordinating

their operation.

To the best of our knowledge, co-design of radar and communication systems for spectrum sharing was first

proposed in [28]–[32]. Compared to the design of [7], [22]–[27], joint design has the potential to improve the

spectrum utilization due to increased number of design degrees of freedom. Co-design requires access to physical

layer information on both systems. For example, both systems would have to share physical layer information

with a node designated as the control center, which would optimally design the signaling schemes of each system.

Obviously, this requires a certain degree of cooperation, but the payback would be less less interference for the

radar and higher throughput for the communication system. The amount of information that can be shared and the

privacy issues involved would have to be evaluated in each case. Examples of radar systems that could be amenable

to such cooperation include radar for autonomous vehicles, weather monitoring, etc.

This paper investigates spectrum sharing of a MIMO communication system and a matrix completion (MC) based,

collocated MIMO radar (MIMO-MC) system [33]–[35]. Traditional MIMO radars transmit different waveforms from
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their transmit (TX) antennas, and their receive (RX) antennas forward their measurements to a fusion center for

further processing. At the fusion center, based on the measurements the “data matrix” is formulated, which contains

all the information about the targets. For a relatively small number of targets, the data matrix is low-rank [33], thus

it to be reconstructed with provably accuracy (under certain conditions) based on a small set of its entries, which

may be corrupted by a small amount of noise [34], [36]. This observation is the basis of MIMO-MC radars; the

RX antennas forward to the fusion center a small number of pseudo-randomly sub-Nyquist sampled measurements,

along with their sampling scheme, each RX antenna partially filling a row of the measurement matrix. The full

data matrix, corresponding to Nyquist sampled data, is stably recovered via MC techniques, with reconstruction

error proportional to the noise level, and can subsequently be used for target detection via standard array processing

methods [33]. The sub-sampling at the antennas avoids the need for high rate analog-to-digital converters, and

the reduced amount of samples translates into power and bandwidth savings in the antenna-fusion center link.

MIMO-MC radars can achieve the high resolution of traditional MIMO radars with significantly fewer samples

and reduced hardware complexity. Compared to compressive sensing (CS) based MIMO radars [37]–[39], which

is another sample-reduction approach in the literature, MIMO-MC radars avoid basis mismatch problems, and by

recovering all missing data via matrix completion do not suffer from signal-to-noise ratio (SNR) loss due to data

subsampling. Our previous work [28], [29] showed that MIMO-MC is particularly well suited for spectrum sharing.

This is because the sparse sampling modulates the interference channel to the communication system and increases

its null space, thus giving the opportunity to the communication system to transmit along that null space and avoid

interfering with the radar.

In the above context, in this paper we propose a new cooperative spectrum sharing scheme for MIMO-MC radars

and MIMO communication systems by building on our previous results [28]–[32]. The proposed approach exploits

precoding at the radar as well as the communication system antennas, in order to maximize the radar signal-to-

interference-plus-noise ratio (SINR) while enabling the communication system to meet its operational objective.

In addition to enabling coexistence, the precoding allows the mitigation of the effects of clutter. The radar task at

hand is target tracking in clutter, i.e., the target parameters obtained from previous tracking cycles are available

for the following tracking cycle to optimize the transmission for better SINR performance [40]. Thus, similar to

transmit beamforming literature [41]–[43], some target parameters, e.g., the number and directions of the targets,

are assumed known a priori. The main contributions of the proposed work are summarized as follows:

1) We prove the feasibility of transmit precoding for MIMO-MC radars using random unitary waveforms. In

particular, we show that the coherence of the data matrix of a transmit precoding based MIMO-MC radar is

upper bounded by a small constant (see Theorem 2), a key condition for the applicability of matrix completion.

Furthermore, the derived bound is independent of the transmit precoder as long as the resulted data matrix has

rank equal to the number of targets. This means that we can design the precoder for the purpose of transmit

beamforming and interference suppression, without affecting the incoherence property of the data matrix, etc.

Random unitary waveforms can be easily generated. Thus, to preserve security, the radar can change those

June 14, 2017 DRAFT



4

waveforms periodically without affecting the matrix completion performance.

2) We propose an architecture for the control center, which is a node with increased computational power and

coordinates the cooperation. The control center integrates the operation of a fusion center for the radar, and

is also responsible for collecting information from the radar and communication systems, computing the

jointly optimal signal scheme for spectrum sharing, and distributing the optimal scheme to each system. The

introduction of the control center reduces the network complexity, and promotes cooperation while maintaining

the privacy of the two systems.

3) We formulate an optimization problem, to be solved at the control center; the objective function is the

SINR at the radar, and the constraints are the communication system rate and the radar and communication

system power. The radar SINR considers interference from the communication system and also clutter. The

solution consists of the communication transmit covariance matrices, the radar precoding matrix, and the

radar sub-sampling scheme. In order to formulate the problem, the control center requires channel state

information (CSI), and target and clutter parameters. Since the control center integrates the radar fusion

center functionality, the target angles obtained from the previous tracking cycle are naturally available. In

practice, the clutter parameters can be estimated when the targets are absent [43]. The problem is solved

via alternating optimization. Insight on the problem feasibility and the rank of the obtained radar precoding

matrix is also provided.

To the best of our knowledge, the joint design of transmit precoders and the radar clutter mitigation have not

been considered in MIMO radar and communication coexistence literature. The proposed joint design involves high

computational complexity. However, the computation capability of control centers grows exponentially thanks to

techniques such as cloud computing and specialized integrated circuits.

A. Relation to the literature

The proposed MIMO-MC radar with precoding extends the work in [33], [35], where there is no transmit

precoding, and the radar waveforms are obtained as the solution of a computationally intensive optimization

problem. In contrast, our proposed approach supports waveform agility and can handle clutter and interference.

The proposed approach extends the work in [28] and [29], where no precoding is used, and the radar interference at

the communication receiver is controlled via subtraction of an estimate of the interference. However, such approach

might not work well when the radar power is high and can saturate the communication receiver. Further, due to the

random phase offset between the radar transmitter and the communication receiver, following the subtraction there

will always be residual interference, which can degrade the communication system performance. Joint transmit

precoding for the coexistence of traditional MIMO radars and a MIMO communication system was first studied

in [30]–[32]. Our work here exploits radar precoding for the problem studied in [30]–[32]. The effect of precoding

on the conditions for matrix completion is not straightforward to determine. One of the contributions of this paper

is to prove that the matrix completion performance can still be guaranteed when radar precoding is used.
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TABLE I: Notations

CN (µ,Σ) the circularly symmetric complex Gaussian distribu-

tion with mean µ and covariance matrix Σ

| · |, Tr(·) matrix determinant & trace

N+
L the set {1, . . . , L}

δij the Kronecker delta

x+ max(0, x)

bxc the largest integer smaller or equal to x

<(·) the real part of a complex variable

AT ,AH the transpose and Hermitian transpose of A

⊗ the Kronecker product

◦ the Hadamard product

‖A‖ the spectral norm of matrix A, i.e., the largest

singular value

‖A‖∗ the nuclear norm of matrix A, i.e., the sum of

singular values

‖A‖F the Frobenius norm of matrix A, i.e.,
√

Tr(AHA)

A·m the m-th column vector of A

Am· the m-th row vector of A.

[A]i,j the (i, j)-th element of matrix A

R(A) the range (column space) of matrix A

B. Organization

The paper is organized as follows. Section II starts with the background on MIMO-MC radars. We then provide

the incoherence property for the MIMO-MC radars using random unitary waveforms and nontrivial precoders.

Section III introduces the signal model when the MIMO-MC radar and communication systems coexisted. The

problem of MIMO communication sharing spectrum with MIMO-MC radar is studied in Sections IV. Numerical

results and conclusions are provided in Sections V-VI.

Notation: The notation is summarized in Table I.

II. MIMO-MC RADAR REVISITED

A. Background on MIMO-MC Radar

Consider a collocated MIMO radar system with Mt,R TX antennas and Mr,R RX antennas arranged as uniform

linear arrays (ULA) with inter-element spacing dt and dr, respectively. The radar is pulse based with pulse repetition

interval TPRI and carrier wavelength λc. The K far-field targets are with distinct angles {θk}, target reflection

coefficients {βk} and Doppler shifts {νk} and are assumed to fall in the same range bin. Following the clutter-free

model of [33]–[35], the noisy data matrix at the fusion/control center can be formulated as

YR = VrΣVT
t PS + WR, (1)
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where the m-th row of YR ∈ CMr,R×L contains the L fast-time raw samples forwarded by the m-th antenna [40];

S = [s(1), · · · , s(L)], if the waveform matrix, with s(l) = [s1(l), · · · , sMt,R
(l)]T being the l-th snapshot across the

transmit antennas; the transmit waveforms are assumed to be orthogonal, i.e., it holds that SSH = IMt,R
[33]; WR

denotes additive noise; and P ∈ CMt,R×Mt,R denotes the transmit precoding matrix. Vt , [vt(θ1), . . . ,vt(θK)]

and Vr , [vr(θ1), . . . ,vr(θK)] respectively denote the transmit and receive steering matrix and vr(θ) ∈ CMr,R is

the receive steering vector defined as

vr(θ) ,
[
e−j2π0ϑr

, . . . , e−j2π(Mr,R−1)ϑr
]T
, (2)

where ϑr = dr sin(θ)/λc denotes the spatial frequency w.r.t. the receive array. vt(θ) ∈ CMt,R is the transmit steering

vector and is respectively defined. Matrix Σ is defined as Σ , diag([β1e
j2πν1 , . . . , βKe

j2πνK ]). D , VrΣVT
t is

the target response matrix. At the fusion center, YR passes through the matched filters, after which target estimation

is performed via standard array processing methods [44].

When K is smaller than Mr,R and L, the noise-free data matrix M , DPS is low-rank and can be provably

recovered based on a subset of its entries. This observation gave rise to MIMO-MC radars [33]–[35], where each

RX antenna sub-samples the target returns and forwards the samples to the fusion center. The partially filled data

matrix at the fusion center can be mathematically expressed as follows (see [33] Scheme I)

Ω ◦YR = Ω ◦ (M + WR), (3)

where ◦ denotes the Hadamard product; Ω is the sub-sampling matrix containing 0’s and 1’s. The sub-sampling

rate p equals ‖Ω‖0/(LMr,R). When p = 1, the Ω matrix is filled with 1’s, and the MIMO-MC radar is identical

to the traditional MIMO radar. At the fusion center, the completion of M can be achieved by the following nuclear

norm minimization problem [36]

min
M
‖M‖∗ s.t. ‖Ω ◦M−Ω ◦YR‖F ≤ δ, (4)

where δ > 0 is a parameter determined by the sampled entries of the noise matrix, i.e., Ω ◦WR. It is shown in

[36] that the recovery of M is stable against noise. The matrix recovery error is proportional to the noise level δ,

given that the following conditions hold [36]

• M is incoherent with parameters (µ0, µ1),

• Ω corresponds to uniformly at random sub-sampling operation with m , Mr,RLp ≥ CKn log n, where

n , max{Mr,R, L}.

It is important to note that, under the above conditions, the noise free data matrix, M, can be stably reconstructed

with high accuracy, thus preserving all the received target echo power. The incoherence parameters (µ0, µ1) are

given by µ0 ≥ max(µ(U), µ(V )), µ1

√
K

Mr,RL
≥ ‖

∑K
k=1 U·kV

H
·k‖∞, where U ∈ CMr,R×K and V ∈ CL×K

contain the left and right singular vectors of M; the coherence of subspace V spanned by basis matrix V is defined

as

µ(V ) ,
L

K
max

1≤l≤L
‖Vl·‖2 ∈

[
1,
L

K

]
.

In [35], upper bounds on the incoherence parameters of M were derived for the case P = I. Those bounds, along
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with the orthogonality property of the radar waveforms were used to design waveforms with good incoherence

properties (see Theorem 2 of [35]). The work of [35] involves numerical optimization on the complex Stiefel

manifold, which has high computational complexity. However, radar waveforms need to be updated frequently as

security against adversaries, which makes the issue of computational cost more severe.

It was shown in [33] that the matrix completion performance degrades severely when the SINR drops below

10 dB [33], which suggests that along with “good” radar waveforms, a precoder design for interference mitigation

is very important. In the following, we consider radar precoder design in order to maximize the radar SINR, and

propose to use a random unitary matrix [45] as the waveform matrix S. This choice of waveform matrix is motivated

by the simulations in [35] which show that the random unitary matrix performs almost the same as the optimally

designed waveform. While the effect of such waveform matrix on matrix completion was studied in [35], the effect

of the precoder as well as the waveform matrix on matrix completion is analyzed in the following subsection. We

should note that the results of [35] cannot be easily extended for a nontrivial transmit precoding case.

B. MIMO-MC Radar Using Random Unitary Matrix

A random unitary matrix [45] can be obtained through Gram-Schmidt orthogonalization of a random matrix with

entries distributed as i.i.d Gaussian. This means that we can generate waveform candidates easily. The following

theorem provides an upper bound on the incoherence parameter µ(V ) of M when random unitary waveform is

used and a non-trivial radar precoder P is employed.

Theorem 1. (Bounding µ(V )) Consider the MIMO-MC radar presented in Section II-A with S being random

unitary. For any transmit precoder P such that the rank of M is K0 ≤ K, and arbitrary transmit array geometry

and target angles, the coherence of subspace V obeys the following:

µ(V ) ≤ K0 + 2
√

3K0 lnL+ 6 lnL

K0
, µ̃t0

with probability 1− L−2.

Proof: The proof can be found in Appendix A.

The proof uses algebraic manipulations and the non-asymptotic probability bounds on Gaussian random vectors

[46]. Based on Theorem 1, we have the following theorem for the incoherence parameters of M.

Theorem 2. (Coherence of M with random unitary waveform matrix) Consider the MIMO-MC radar presented

in Section II-A with S being random unitary. On denoting the Fejér kernel by Fn(x), for dr = λc/2, arbitrary

transmit array geometry, and

K ≤
√
Mr,R/FMr,R

(ξr),

the matrix M is incoherent with parameters µ0 , max{ KK0
µr0, µ̃

t
0} and µ1 ,

√
K0µ0 with probability 1 − L−2,

where µ̃t0 is defined in Theorem 1. µr0 is the upper bound on µ(U) derived in [35, Theorem 2]. The incoherence

property of M holds for any precoding matrix P such that the rank of M is K0.
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Proof: The theorem can be proven by combining the bounds on µ(U) and µ(V ) in [35, Theorem 2] and

Theorem 1, respectively.

Remark 1. Some comments are in order. First, if K0 is O(lnL), the upper bound µ̃t0 > 1 is a small constant.

Therefore, M has a good incoherent property. A similar bound was provided on the coherence of the subspaces

spanned by random orthogonal basis in [47]. Second, unlike the results in [35, Theorem 2], the probabilistic bound

on µ(V ) is independent of the target angles and array geometry. Third, the above results hold for any random

unitary matrix S. The radar waveform can be changed periodically, which would be good for security reason,

without affecting the matrix completion performance. Finally, the probabilistic bound on µ(V ) in Theorem 1 is

independent of P. This means that we can design P, without affecting the incoherence property of M, for the

purpose of transmit beamforming and interference suppression. This key observation validates the feasibility of radar

precoding based spectrum sharing approaches for MIMO-MC radar and communication systems in the sequel. Note

that this paper focuses on the design of radar precoder in the spatial domain, not the waveform. The radar precoder

will not affect the waveform ambiguity property in the time and Doppler domains.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the coexistence scenario in [29], as shown in Fig. 1, where a MIMO-MC radar system and a MIMO

communication system operate using the same carrier frequency. Note that the coexistence model is general, because

when full sampling is adopted the MIMO-MC radar turns to be a traditional MIMO radar. In the coexistence system,

H ∈ CMr,C×Mt,C denotes the communication channel, where Mr,C and Mt,C denote respectively the number of RX

and TX antennas of the communication system; G1 ∈ CMr,C×Mt,R and G2 ∈ CMr,R×Mt,C denote the interference

channels between the communication and radar systems.

The cooperative spectrum sharing can be implemented via the system architecture of Fig. 2. The coordination

of the cooperation is conducted by a control center, which collects information from the two systems, formulates

and solves an optimization problem, and passes to each systems its optimal parameters. The control center can be

thought of as an enhanced Spectrum Access System (SAS) used in the FCC release [48], and is connected to the

radar/communication system via either a wireless link, or a backhaul channel.

The control center can also integrate the functionality of the radar fusion center, i.e., target detection, estimation

and tracking, and specifically for the MIMO-MC radar considered in this paper, also matrix completion. There are

several advantages in having a control center that encompasses the radar fusion center. First, a powerful all-in-

one center greatly simplifies the complexity of the overall network. Second, radar operators, especially in military

applications, are not willing to share information directly with civilian cellular systems out of security concerns. In

such cases the control center can be operated by the radar, and enables cooperation while maintaining the isolation

of the radar and communication systems. Third, the radar and communication systems only need communication

interfaces with the control system.

In order to establish our coexistence model, the key assumptions made in this paper are summarized as follows.
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… …

… …

Collocated MIMO radar

Communication TX Communication RX

Fig. 1: A MIMO communication system sharing spectrum with a colocated MIMO radar system

Fig. 2: The proposed spectrum sharing architecture. The cooperation is coordinated by the control center, a node

with high computing power that also serves as the radar fusion center. The control center collects information from

radar and communication systems, computes jointly optimal signaling schemes for both systems and sends each

scheme back to the corresponding system.

a) Signal bandwidth: We assume that the two systems transmit narrowband waveforms with the same symbol

period. To evaluate the feasibility of radar and communication systems having the same symbol period, let us

consider an S-band search and acquisition radar with range resolution equal to 300m (a typical range resolution is

between 100m and 600m [49], [50]). The corresponding radar sub-pulse duration is 2µs. Communication symbol

duration should of 2µs, are quite typical in model cellular systems [51]. The transmitted signal is narrowband if

the channel coherence bandwidth is larger than the signal bandwidth [51]–[53]. In a macro-cell, typical values

for the channel coherence bandwidth are of the order of 1 MHz [54], [55], which is much larger than the signal

bandwidth of 0.5 MHz (or symbol interval 2µs). Thus, the narrowband assumption is typically valid. If higher

signal bandwidth is needed, OFDM signaling can be used for both radar [15], [17] and the communication system

[54], [55]. Our coexistence model can still be valid on each OFDM carrier, over which the signal can be considered

as narrowband.

b) About fading: We assume that H, G1 and G2 are flat fading, which is valid when the transmitted signals

are narrowband. The flat fading assumption is a common practice in the radar-communication system coexistence

literature [7], [22]–[25]. In addition, all channels are assumed to be block fading over the radar pulse repetition
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Fig. 3: TDM based CSI estimation and feedback and reception of design results from the control center.

interval (PRI). For a radar with medium pulse repetition frequency, the pulse repetition interval is usually between

30µs and 0.3 ms. The typical channel coherence time for 2.5 GHz and 5.8 GHz carrier frequency ranges from

2 ms up to 200 ms [56]. The channel coherence time is much larger than the radar pulse repetition interval. As

for the moving targets, the resulting Doppler shifts are usually assumed to be constant during one PRI [40], [57].

Therefore, channel block fading is a reasonable assumption.

c) About CSI: The channel H is assumed to be perfectly known at the communication transmitter. The channels

G1 and G2 are also assumed to be perfectly known at the radar. The CSI estimation can be achieved using pilot

channels [7], [58] scheduled by the control center in FDM or TDM fashion. As a simple example, based on Fig.

2, the communication transmitter, i.e., the base station (BS), transmits a reference signal in pilot burst A, and this

is used by the radar to estimate G2. The communication receiver, i.e., a user entity (UE), transmits a reference

signal in pilot bursts B, and this is used by the BS and the radar to estimate H and G1, respectively, based on

channel reciprocity [59]. All estimated CSI is sent to the control center by the radar and the BS, where it is used

to jointly optimize the spatial multiplexing. Note that CSI estimation and feedback can be scheduled based on the

channel coherence time, which is much larger than the radar pulse repetition interval. Figure 3 shows a simplified

schematic diagram for CSI estimation/feedback and receiving design results from the control center based on TDM.

Existing techniques in cognitive radios and multiuser MIMO (MU-MIMO) [60]–[66] can also be applied to reduce

the overhead for CSI feedback.

d) About the radar mode of operation: We consider the target tracking scenario, in which the radar searches

in particular directions of interest given by set {θk} and a range bin of interest for targets with unknown RCS

variances [41], [42]. In such scenario, the target parameters have typically been obtained from previous tracking

cycles, and are used to optimize the transmission for better SINR performance [40].

Under the above assumptions, let us consider the same target scene in a particular range bin as in Section II-A

but with clutter. The baseband signal received by the radar and communication receivers during L symbol durations
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in one radar pulse repetition interval can be expressed as

Radar receiver:

Ω ◦YR = Ω ◦
(
DPS︸ ︷︷ ︸
signal

+ CPS + G2XΛ2︸ ︷︷ ︸
interference

+ WR︸︷︷︸
noise

)
, (5a)

Communication receiver:

YC = HX︸︷︷︸
signal

+ G1PSΛ1︸ ︷︷ ︸
interference

+ WC︸︷︷︸
noise

, (5b)

where YR, D, P, S, WR, and Ω are defined in Section II-A. Note that delay in the radar signal model is assumed

a prior in current tracking cycle and properly compensated. The waveform-dependent interference CPS contains

interferences from point scatterers (clutter or interfering objects). Suppose that there are Kc point clutters with angles

{θck}, reflection coefficients {βck} in the same range bin as the targets. C ,
∑Kc

k=1 β
c
kvr(θ

c
k)vTt (θck) is the clutter

response matrix. YC and WC denote the received signal and additive noise at the communication RX antennas,

respectively. The columns of X , [x(1), . . . ,x(L)] are codewords from the code-book of the communication

system. We assume that WR/C contains i.i.d random entries distributed as CN (0, σ2
R/C). The diagonal matrix

Λi, i ∈ {1, 2} contains the random phase offset ejαil between the MIMO-MC radar and the communication system

at the l-th symbol. The time-varying phase offsets are results of the random phase jitters of the oscillators between

the radar transmitter and the communication receiver and vice versa [29], [67]. Note that the Doppler shift will

not be an issue for the proposed design in our paper. The radar signal model in (5a) is for the fast-time samples

received in one radar pulse. In the radar literature, the Doppler shift is usually assumed to be constant during one

radar pulse [38], [40], [57], [68]. Therefore, as shown in our signal model, the Doppler shift can be absorbed into

the target RCS, and does not affect our proposed design.

The control center aims to protect the radar system and maximize the spectrum efficiency. In the following, we

propose for the control center a joint design of the communication and radar transmissions, so that we minimize

the interference at the radar RX antennas for successful matrix completion, while satisfying certain communication

system requirements.

IV. THE PROPOSED SPECTRUM SHARING METHOD

In this section, we first derive the communication rate and radar SINR in terms of communication and radar

waveforms and formulate the MIMO-MC radar and MIMO communication spectrum sharing problem. In Section

IV-A, an optimization algorithm is proposed using alternating optimization. Insight on the feasibility and properties

of the proposed problem is provided in IV-B. We briefly discuss the spectrum sharing formulations for constant-rate

communication transmission and traditional MIMO radars respectively in Section IV-C and IV-D.

For the communication system, the covariance of interference plus noise is given by

RCin = G1ΦGH
1 + σ2

CI (6)

where Φ , PPH/L is positive semidefinite. For l ∈ N+
L , the instaneous information rate is unknown because the

interference plus noise is not necessarily Gaussian due to the random phase offset α1(l). Instead, we are interested
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in a lower bound of the rate, which is given by [69]

C(Rxl,Φ) , log2

∣∣I + R−1
CinHRxlH

H
∣∣ ,

which is achieved when the codeword x(l), l ∈ N+
L is distributed as CN (0,Rxl). The average communication rate

over L symbols is as follows

Cavg({Rxl},Φ) ,
1

L

L∑
l=1

C(Rxl,Φ), (7)

where {Rxl} denotes the set of all Rxl’s.
The MIMO-MC radar only partially samples YR. Therefore, only the sampled target signal and sampled interfer-

ence determine the matrix completion performance. Based on this observation, we define the effective signal power

(ESP) and effective interference power (EIP) at the radar RX node as follows

ESP , E
{

Tr
(
Ω ◦ (DPS)

(
Ω ◦ (DPS)H

))}
= pLMr,RTr (ΦDt) ,

(8)

EIP , pLMr,RTr (ΦCt) +
∑L

l=1
Tr
(
G2lRxlG

H
2l

)
, (9)

where Dt =
∑K
k=1 σ

2
βk

v∗t (θk)vTt (θk), Ct =
∑Kc

k=1 σ
2
βc
k
v∗t (θ

c
k)vTt (θck), σβk

and σβc
k

denote the standard deviation

of βk and βck, respectively; G2l , ∆lG2 and ∆l = diag(Ω·l). The derivation can be found in Appendix B, which

assumes that each of the target and clutter reflection coefficient is an independent complex Gaussian variable with

zero mean, which is widely considered in the literature [42], [43], [70].

Remark 2. The sub-sampling at the radar receiver effectively modulates the interference channel G2 from the

communication transmitter to the radar receiver. At sampling time l, only the interferences at radar RX antennas

corresponding to 1’s in Ω·l are sampled. Equivalently, the effective interference channel during the l-th symbol

duration is G2l. Therefore, adaptive communication transmission with symbol dependent covariance matrix Rxl

is used in order to match the variation of the effective interference channel G2l [29]. The disadvantage is high

computational cost. A sub-optimal alternative is constant rate communication transmission, i.e., Rxl ≡ Rx,∀l ∈ N+
L ,

outlined in Section IV-C.

Incorporating the expressions for effective target signal, interference and additive noise, the effective radar SINR
is given as

ESINR =
Tr (ΦDt)

Tr (ΦCt) +
∑L
l=1 Tr (G2lRxlGH

2l) /(pLMr,R) + σ2
R

.

One can see that the joint design of the communication TX covariance matrices {Rxl}, the radar precoder P

(embedded in Φ), and the radar sub-sampling scheme Ω is necessary to maximize the ESINR. In Theorem 2, we

prove that the radar precoder P can be designed without affecting the incoherence property of M. At the control
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center, the spectrum sharing problem can be formulated as follows

(P1) max
{Rxl}�0,Φ�0,Ω

ESINR ({Rx},Ω,Φ) ,

s.t. Cavg({Rxl},Φ) ≥ C, (10a)

L∑
l=1

Tr (Rxl) ≤ PC , LTr (Φ) ≤ PR, (10b)

Tr (ΦVk) ≥ ξTr(Φ),∀k ∈ N+
K , (10c)

Ω is proper, (10d)

where Vk , v∗t (θk)vTt (θk). The constraint of (10a) restricts the communication rate to be at least C, in order to

support reliable communication and avoid service outage. The constraints of (10b) restrict the total communication

and radar transmit power to be no larger than PC and PR, respectively. The constraints of (10c) restrict that the

power of the radar probing signal at interested directions must be not smaller than that achieved by the uniform

precoding matrix Tr(Φ)
Mt,R

I, i.e., vTt (θk)Φv∗t (θk) ≥ ξvTt (θk) Tr(Φ)
Mt,R

Iv∗t (θk) = ξTr(Φ). ξ ≥ 1 is a parameter used to

control the beampattern at the interested target angles. The purpose of this constraint is to ensure fairness across

the multiple targets. The constraint in (10d) imposes the restrictions on the radar sub-sampling matrix Ω such that

it corresponds to a fixed sub-sampling rate p and has large spectral gap1 [71].

In order for the control center to formulate and solve the problem of (10) it needs (i) the communication and radar

system CSI; estimation and feedback of CSI is discussed in Section III. (ii) target angles, and clutter parameters

{σ2
βc
k
} and {θck}. Since the control center integrates the radar fusion center functionality, the target angles obtained

from the previous tracking cycle will be available. In practice, the clutter parameters could be estimated when the

targets are absent [43]. If {σ2
βk
} is not known, we can instead use a single value σ2

0 for all the targets. This choice

effectively means that the objective treats all target directions equally. One possible choice for σ2
0 is the smallest

target RCS variance that could be detected by the radar. Note that the solution of (P1) is independent on the specific

value of σ2
0 . (iii) all parameters in the constraints. Parameters like power budget and required communication rate

can also be provided by the radar and communication systems.

Problem (P1) is non-convex w.r.t. optimization variable triple ({Rx},Ω,Φ). We propose an algorithm to find

a local solution via alternating optimization in Subsection IV-A. In Subsection IV-B, we provide some insights on

the feasibility and solution properties for (P1).

A. Solution to (P1) Using Alternating Optimization

The alternating iterations w.r.t. {Rxl}, Ω, and Φ are discussed in the following three subsections.

1In matrix completion literature, Ω is either a uniformly random sub-sampling matrix [36], or the adjacency matrix of a regular bipartite

graph with large spectral gap [71]. The spectral gap of a matrix is defined as the difference between the largest singular value and the second

largest singular value.
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1) The Alternating Iteration w.r.t. {Rxl}: We first solve for {Rxl} while setting Ω and Φ to be equal to the

solution from the previous iteration:

(PR) min
{Rxl}�0

L∑
l=1

Tr
(
G2lRxlG

H
2l

)
s.t. Cavg({Rxl},Φ) ≥ C,

L∑
l=1

Tr (Rxl) ≤ PC .

(11)

Problem (PR) is convex and involves multiple matrix variables, the joint optimization with respect to which requires

high computational complexity. The semidefinite matrix variables {Rxl} have LM2
t,C real scalar variables, which

will results in a complexity of O((LM2
t,C)3.5) if an interior-point method [72] is used. An efficient algorithm for

solving the above problem can be implemented based on the Lagrangian dual decomposition [72]. Please refer

to [29, Algorithm 1] for the detailed solution. The complexity of the dual decomposition based algorithm is only

linearly dependent on L.

2) The Alternating Iteration w.r.t. Ω: By simple algebraic manipulation, the EIP from the communication

transmission can be reformulated as
L∑
l=1

Tr
(
G2lRxlG

H
2l

)
≡ Tr(ΩTQ),

where the l-th column of Q contains the diagonal entries of G2RxlG
H
2 . With fixed {Rxl} and Φ, we can solve

Ω via

min
Ω

Tr(ΩTQ) s.t. Ω is proper, (12)

Recall that the sampling matrix Ω is required to have large spectral gap. However, it is difficult to incorporate such

conditions in the above optimization problem. Based on the fact that row and column permutation of the sampling

matrix would not affect its singular values and thus the spectral gap, our prior work [29] proposed a suboptimal

approach to search the best sampling scheme by permuting rows and columns of an initial sampling matrix Ω0,

i.e.,

min
Ω

Tr(ΩTQ) s.t. Ω ∈ ℘(Ω0), (13)

where ℘(Ω0) denotes the set of matrices obtained by arbitrary row and/or column permutations. Ω0 is generated

with binary entries and bpLMr,Rc ones. Therefore, the constraint on number of 1’s in Ω can also be satisfied.

One good candidate for Ω0 would be a uniformly random sampling matrix, as such matrix exhibits large spectral

gap with high probability [71]. Multiple trials with different Ω0’s can be used to further improve the choice of

Ω. However, the search space is very large since |℘(Ω0)| = Θ(Mr,R!L!). In this paper, we propose to reduce the

search space as follows

min
Ω

Tr(ΩTQ) ≡ Tr(ΩQT ) s.t. Ω ∈ ℘r(Ω0), (14)

where ℘r(Ω
0) denotes the set of matrices obtained by arbitrary row permutations. The search space in (14)

|℘r(Ω0)| = Θ(Mr,R!) is greatly reduced compared to that in (13). Furthermore, the following proposition shows

that such reduction of search space comes without any performance loss.

June 14, 2017 DRAFT



15

Al , −
(
∂C(Rxl,Φ)

∂<(Φ)

)T
Φ=Φ̄

= GH
1 [(G1ΦGH

1 + σ2
CI)−1 − (G1ΦGH

1 + σ2
CI + HRxlH

H)−1]G1

∣∣
Φ=Φ̄

. (15)

Proposition 1. For any Ω0, searching for an Ω in ℘r(Ω0) can achieve the same EIP as searching in ℘(Ω0).

Proof: We can prove the proposition by showing that the EIP achieved by any Ω1 ∈ ℘(Ω0) can also be achieved

by a certain Ω2 ∈ ℘r(Ω0). For the pair (Ω1, {Rxl}), the same EIP can be achieved by the pair (Ω2, {R̃xl}), where

• Ω2 is constructed by performing on Ω0 the row permutations performed from Ω0 to Ω1, and

• {R̃xl} is a permutation of {Rxl} according to the column permutations performed from Ω0 to Ω1.

In other words, the column permutations on Ω is unnecessary because {Rxl} will be automatically optimized to

match the column pattern of Ω. The claim is proven.

The problem in (14) aims to find the best one-to-one match between the rows of Ω0 and the rows of Q. Let

us construct a cost matrix Cr ∈ RMr,R×Mr,R with [Cr]ml , Ω0
m·(Ql·)

T . The problem turns out to be a linear

assignment problem with cost matrix Cc, which can be solved efficiently in polynomial time O(M3
r,R) using the

Hungarian algorithm [73].

3) The Alternating Iteration w.r.t. Φ: For the optimization of Φ with fixed {Rxl} and Ω, the constraint in

(10a) is nonconvex w.r.t. Φ. The first order Taylor expansion of C(Rxl,Φ) at Φ̄ is given as

C(Rxl,Φ) ≈ C(Rxl, Φ̄)− Tr
[
Al(Φ− Φ̄)

]
,

where Al is given in (15) on the top of next page.

The sequential convex programming technique is applied to solve Φ by repeatedly solve the following approximate

optimization problem

(PΦ) max
Φ�0

Tr(ΦDt)

Tr(ΦCt) + ρ
,

s.t. Tr (Φ) ≤ PR/L,Tr (ΦA) ≤ C̃,

Tr (ΦVk) ≥ ξTr (Φ) ,∀k ∈ N+
K ,

(16)

where C̃ =
∑L
l=1(C(Rxl, Φ̄)+Tr(Φ̄Al)−C), A =

∑L
l=1 Al, ρ =

∑L
l=1 Tr

(
RxlG

H
2 ∆lG2

)
/(pLMr,R)+σ2

R are

real positive constants w.r.t. Φ, and Φ̄ is updated as the solution of the previous repeated problem. Problem (16)

could be equivalently formulated as a semidefinite programming problem (SDP) via Charnes-Cooper Transformation

[43], [74].
max

Φ̃�0,φ>0
Tr(Φ̃Dt),

s.t. Tr(Φ̃Ct) = 1− φρ

Tr
(
Φ̃
)
≤ φPR/L,Tr

(
Φ̃A

)
≤ φC̃,

Tr
(
Φ̃(Vk − ξI)

)
≥ 0,∀k ∈ N+

K .

(17)
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The optimal solution of (17), denoted by (Φ̃∗, φ∗), can be obtained by using any standard interior-point method

based SDP solver with a complexity of O((M2
t,R)3.5). The solution of (16) is given by Φ̃∗/φ∗. In each alternating

iteration w.r.t. Φ, it is required to solve several iterations of SDP due to the sequential convex programming.

It is easy to show that the objective function, i.e., ESINR, is nondecreasing during the alternating iterations of

{Rxl}, Ω and Φ, and is upper bounded. According to the monotone convergence theorem [75], the alternating

optimization is guaranteed to converge. The proposed efficient spectrum sharing algorithm in presence of clutter

using a lower bound of the radar SINR is summarized in Algorithm 1.

Algorithm 1 Spectrum sharing algorithm for (P1).

1: Input: Dt,Ct,H,G1,G2, PC/R, C, σ
2
C/R, δ1

2: Initialization: Φ = PR

LMt,R
I, Ω = Ω0;

3: repeat

4: Update {Rxl} by solving (PR) with fixed Ω and Φ;

5: Update Ω by solving (14) with fixed {Rxl} and Φ;

6: Update Φ by solving a sequence of approximated SDP problem (16) with fixed {Rxl} and Ω;

7: until ESINR increases by amount smaller than δ1

8: Output: {Rxl},Ω,P =
√
LΦ1/2

B. Insights on the Feasibility and Solutions of (P1)

In this subsection, we provide some key insights on the feasibility of (P1) and the rank of the solutions Φ

obtained by Algorithm 1.

1) Feasibility: A necessary condition on C for the feasibility of (P1) w.r.t. {Rxl} is C ≤ Cmax(PC) where

Cmax(PC) , max
{Rxl}�0

1

L

L∑
l=1

log2

∣∣I + σ−2
C HRxlH

H
∣∣ ,

s.t.
L∑
l=1

Tr (Rxl) ≤ PC

The above optimization problem is convex and has a closed-form solution based on water-filling [52]. It can be

shown that Cmax(PC) is essentially the largest achievable communication rate when there is no interference from

radar transmitters to the communication receivers. Note that C = Cmax(PC) will generate a nonempty feasible set

for {Rxl} only if G1ΦGH
1 = 0, i.e., the radar transmits in the null space of the interference channel G1 to the

communication receivers2.

A necessary condition on ξ for the feasibility of (P1) w.r.t. Φ is ξ ≤ ξmax where

ξmax , max
Φ�0,ξ≥0

ξ, s.t. Tr(ΦVk) ≥ ξTr(Φ),∀k ∈ N+
K .

2We omit the trivial case Φ = 0.
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Note that the above optimization problem is independent of Tr(Φ). Without loss of generality, we assume that

Tr(Φ) = 1, based on which we have the following equivalent SDP formulation

ξmax , max
Φ�0,ξ≥0

ξ, s.t. Tr(Φ) = 1,

Tr(ΦVk) ≥ ξ,∀k ∈ N+
K .

It is easy to check that ξmax ≥ 1, which can be achieved by set (Φ, ξ) to be (I/Mt,R, 1).

The following proposition provides a sufficient condition for the feasibility of (P1).

Proposition 2. If C, ξ, PC > 0, PR > 0 are chosen such that C < Cmax(PC) and ξ ≤ ξmax, then (P1) is feasible.

Proof: The proof can be found in Appendix C.

2) The Rank of the Solutions Φ: We are also particularly interested in the rank of Φ obtained using Algorithm

1. Since the sequential convex programming technique is used for solving Φ, it suffices to focus on the rank of the

solution of (PΦ). To achieve this goal, we first introduce the following SDP problem

min
Φ�0

Tr (Φ) s.t. Tr (ΦA) ≤ C̃, Tr(ΦDt)

Tr(ΦCt) + ρ
≥ γ,

Tr (ΦVk) ≥ 0,∀k ∈ N+
K .

(18)

where γ is a real positive constant. The following proposition relates the optimal solutions of problems (16) and

(18).

Proposition 3. If γ in (18) is chosen to be the maximum achievable SINR of (16), denoted as SINRmax, the optimal

Φ of (18) is also optimal for (16).

Proof: Denote Φ∗1 and Φ∗2 the optimal solutions of (16) and (18), respectively. It is clear that Φ∗1 is feasible

point of (18). This means that Tr(Φ∗2) ≤ Tr(Φ∗1) ≤ PR. Therefore, Φ∗2 is a feasible point of (16). It holds that

SINRmax ≡
Tr(Φ∗1Dt)

Tr(Φ∗1Ct) + ρ
≥ Tr(Φ∗2Dt)

Tr(Φ∗2Ct) + ρ
≥ SINRmax.

It is only possible when all the equalities hold. In other words, Φ∗2 is optimal for (16). The claim is proved. Note

that SINRmax is introduced as an intermediate for the proof.

In order to characterize the optimal solution of (18), we need the following key lemma:

Lemma 1. Matrix Al defined in (15) and thus A are positive semidefinite.

Proof: The proof can be found in Appendix D.

Based on Lemma 1, we prove the following result by following the approach in [74]:

Proposition 4. Suppose that (18) is feasible when γ is set to SINRmax. Then, any optimal solution of (18) has rank

at most K. All rank-K solutions Φ∗K of (18) have the same range space. Any solution Φ∗K− with rank less than K

has range space such that R(Φ∗K−) ⊂ R(Φ∗K). Moreover, (16) and (17) always have solutions with rank at most

K and with the same range space properties as that for (18).

Proof: The proof can be found in Appendix E.
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The proof is based on the Karush-Kuhn-Tucker (KKT) conditions [72]. Proposition 4 indicates that the rank of

the optimal precoding matrix will not be larger than the number of the targets.

C. Constant-Rate Communication Transmission

The adaptive communication transmission in the proposed spectrum sharing methods involves high complexity.

A sub-optimal transmission approach of constant rate, i.e., Rxl ≡ Rx,∀l ∈ N+
L , has a lower implementation

complexity. In such case, the spectrum sharing problem can be reformulated as

(P′1) max
Rx�0,Φ�0

ESINR′(Rx,Ω,Φ),

s.t. C(Rx,Φ) ≥ C,

LTr (Rx) ≤ PC , LTr (Φ) ≤ PR,

Tr (ΦVk) ≥ 0,∀k ∈ N+
K ,

where

ESINR′ =
Tr (ΦDt)

Tr (ΦCt) + Tr
(
∆G2RxGH

2

)
/(pLMr,R) + σ2

R

and ∆ =
∑L
l=1 ∆l is diagonal and with each entry equal to the number of 1’s in the corresponding row of Ω.

Similar techniques in Algorithm 1 can be used to solve (P′1).

We can see that (P′1) has much lower complexity because there is only one matrix variable for the communication

transmission. However, the drawback of the constant-rate communication is that Rx cannot adapt to the variation

of the effective interference channel G2l. On the other hand, the adaptive communication transmission considered

in (P1) can fully exploit the channel diversity introduced by the radar sub-sampling procedure. It will be seen in

the simulations of Section V-C, the constant-rate transmission from the solution of (19) is inferior to the adaptive

transmission from the solution of (10).

Another consequence is that the ESINR′ depends on Ω only through ∆. Since Ω is searched among the row

permutations of a uniformly random sampling matrix, the number of 1’s in each row of Ω is close to pL,

or equivalently, ∆ will be very close to the scaled identity matrix pLI. To further reduce the complexity, the

optimization w.r.t. Ω in (P′1) is omitted because all row permutations of Ω will result in a very similar ESINR′.

From a different perspective, if the radar sub-sampling matrix Ω is not available for the radar and communication

cooperation, we can safely replace ∆ with pLI in the ESINR′. The above discussion asserts that, for the case

of constant-rate communication transmission almost no performance degradation occurs due to the absence of the

knowledge of Ω.

D. Traditional MIMO Radars

The traditional MIMO radars without sub-sampling can be considered as special case with p = 1, and thus there

is no need for the matrix completion. In such case, the constant-rate communication transmission becomes optimal
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scheme because the interference channel G2 stays as a constant for the period of L symbol time due to the block

fading assumption. The spectrum sharing problem has the same form as (P′1) with the objective function being

SINR =
Tr (ΦDt)

Tr (ΦCt) + Tr
(
G2RxGH

2

)
/Mr,R + σ2

R

.

Note that SINR ≈ ESINR′ because ∆ ≈ pLI. Therefore, traditional MIMO radars can achieve approximately the

same spectrum sharing performance as MIMO-MC radars when the communication system transmits at a constant

rate. However, for MIMO-MC radars, the adaptive communication transmission and the radar sub-sampling matrix

can be designed to achieve significant radar SINR increase over the traditional MIMO radars. This advantageous

flexibility is introduced by the sparse sensing (i.e. sub-sampling) in MIMO-MC radars.

V. NUMERICAL RESULTS

In this section, we provide simulation examples to quantify the performance of the proposed spectrum sharing

method for the coexistence of the MIMO-MC radars and communication systems.

Unless otherwise stated, we use the following default values for the system parameters. The MIMO radar system

consists of collocated Mt,R = 16 TX and Mr,R = 16 RX antennas, respectively forming transmit and receive half-

wavelength uniform linear arrays. The radar waveforms are chosen from the rows of a random orthonormal matrix

[28]. We set the length of the radar waveforms to L = 16. The wireless communication system consists of collocated

Mt,C = 4 TX and Mr,C = 4 RX antennas, respectively forming transmit and receive half-wavelength uniform linear

arrays. For the communication capacity and power constraints, we take C = 16 bits/symbol and PC = 6400 (the

power is normalized by the additive noise power). The radar transmit power budget is PR = 1000× PC , which is

typical for radar systems; high power is needed to to combat path loss associated with far-field targets [40]. The

additive white Gaussian noise variances are σ2
C = σ2

R = 1. There are three stationary targets with RCS variance

σ2
β0 = 0.5, located in the far-field with pathloss 10−3. Clutter is generated by four point scatterers, all having the

same RCS variance, σ2
β ; the variance is determined by the clutter to noise ratio (CNR) 10 log σ2

β/σ
2
R. Based on

these numbers, the possible range of SNR at the communication receiver is between 12 dB and 26 dB, which is

supported by LTE systems [76], [77]. The radar power budget corresponds to a per receive antenna SNR of about

23 dB when only additive noise is considered. For a typical radar system with a single antenna, operating with

probability of detection of 0.9 and probability of false alarm of 10−6, the required SNR is about 13.2 dB [40].

However, the actual SNR may be much smaller because spatial degrees of freedom are used to mitigate clutter and

interference from the communication systems.

The channel H is modeled as Rayleigh fading, i.e., contains independent entries, distributed as CN (0, 1). The

interference channels G1 and G2 are modeled as Rician fading. The power in the direct path is 0.1, and the variance

of Gaussian components contributed by the scattered paths is 10−3.

The performance metrics considered in this paper include the following:

• The radar effective SINR, i.e., the objective of the spectrum sharing problem;

• The matrix completion relative recovery error, defined as ‖M−M̂‖F /‖M‖F , where M̂ is the completed data

matrix at the radar fusion center;
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Fig. 4: The radar transmit beampattern and the MUSIC spatial pseudo-spectrum for MIMO-MC radar and

communication spectrum sharing. Mt,R = Mr,R = 16,Mt,C = Mr,C = 4. The true positions of the targets

and clutters are labeled using solid and dashed vertical lines, respectively. CNR=30 dB.

• The radar transmit beampattern, i.e., the transmit power for different azimuth angles vTt (θ)Pv∗t (θ);

• The MUSIC pseudo-spectrum and the relative target RCS estimation RMSE obtained using the least squares

estimation on the completed data matrix M̂.

Monte Carlo simulations with 100 independent trials are carried out to get an average performance.

A. The Radar Transmit Beampattern and MUSIC Spectrum

In this subsection, we present an example to show the advantages of the proposed radar precoding scheme as

compared to the trivial uniform precoding, i.e., P =
√
LPR/Mt,RI, and null space projection (NSP) precoding, i.e.,

P =
√
LPR/Mt,RVVH , where V contains the basis of the null space of G1 [24]. For the proposed joint-design

based scheme in (10), we choose ξ = bξmaxc. The target angles w.r.t. the array are respectively −10◦, 15◦, and

30◦; the four point scatterers are at angles −45◦, −30◦, 10◦, and 45◦. The CNR is 30 dB. In this simulation, the

direct path in G1 is generated as
√

0.1vt(φ)vHt (φ), where φ = 15◦, with vt(φ) is defined in (2). In other words,

the communication receiver is taken at the same azimuth angle as the second target.

Recall that the NSP technique projects the radar waveform onto the null space of the interference channel G2
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MC Relative Relative RCS

Precoding schemes ESINR Recovery Errors Est. RMSE

Joint-design precoding 31.3dB 0.038 0.028

Uniform precoding -44.3dB 1.00 1.000

NSP based precoding -46.3dB 1.00 0.995

TABLE II: The radar ESINR, MC relative recovery errors, and the relative target RCS estimation RMSE for

MIMO-MC radar and communication spectrum sharing. The simulation setting is the same as that for Fig. 4.

in order to avoid creating interference to the communication receiver. Because the null space and row space of

a matrix are orthogonal to each other, there will be no radar power radiated along the null space of G2, thus,

targets in those locations will be missed. Our proposed approach does not suffered from such scenario, because

the precoding is computed via the proposed joint design method instead of projecting to the null space of G2.

The radar transmit beampattern and the spatial pseudo-spectrum obtained using the MUSIC algorithm are shown

in Fig. 4. The correspondingly achieved ESINR, MC relative recovery error, and relative target RCS estimation

RMSE are listed in Table II. We observe that the proposed joint-design based precoding scheme achieves significant

improvement in ESINR, MC relative recovery error, and target RCS estimation accuracy. As expected, the uniform

precoding scheme just spreads the transmit power uniformly in all directions. The NSP precoding scheme achieves

a similar beampattern as the uniform precoding scheme, with the exception of the deep null that the NSP places

in the direction of the communication receiver. The null means that the transmit power towards the second target

is severely attenuated and thus the probability of missing the second target is increased. Neither the uniform nor

the NSP precoding schemes have any capability of clutter mitigation. From Fig. 4, we observe that the proposed

joint-design based precoding scheme successfully focuses the transmit power towards the three targets and nullifies

the power towards the point scatterers. The three targets can be accurately estimated from the pseudo-spectrum

obtained by the proposed scheme. Meanwhile, the communication system can still achieve the required rate by

aligning its transmission along a channel subspace that does not interfere with the radar emissions. This unique

advantage is enabled by the proposed joint design of radar and communication transmissions.

B. Comparison of Different Levels of Cooperation

In this subsection, we compare several algorithms with different levels of radar and communication cooperation.

The compared algorithms include

• Uniform radar precoding and selfish communication: the radar transmit antennas use the trivial precoding, i.e.,

P =
√
LPR/Mt,RI; and the communication system minimizes the transmit power to achieve certain average

capacity without any concern about the interference it exerts to the radar system. This algorithm involves no

radar and communication cooperation.

• NSP based radar precoding and selfish communication: the radar transmit antennas use the fixed precoding,

i.e., P =
√
LPR/Mt,RVVH , while the selfish communication scheme is the same with the previous case.
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Fig. 5: Comparison of spectrum sharing with different levels of cooperation between the MIMO-MC radar and the

communication system under different PR. Mt,R = Mr,R = 16,Mt,C = Mr,C = 4.

• Uniform radar precoding and designing Rxl & Ω: only Rxl & Ω are jointly designed to minimize the effective

interference the radar receiver.

• Designing P and selfish communication: only the radar precoding matrix P is designed to maximize the radar

ESINR.

• The proposed joint-design of P, Rxl, and Ω in (10).

We use the same values for all parameters as in the previous simulation except that the radar transmit power budget

PR changes from 51, 200 to 2.56 × 106. Fig. 5 shows the achieved ESINR, the MC relative recovery error, and

the relative target RCS estimation RMSE. The algorithms that use trivial uniform and NSP based radar precoding

perform bad because the point scatterers are not properly mitigated. The scheme designing P only could mitigate

the scatterers but the interference from the communication transmission is not controlled. The proposed joint design

of P, Rxl, and Ω simultaneously addresses the clutter and the mutual interference between the radar and the

communication systems, and thus achieves the best performance amongst all the algorithms. The performance gains

come from high level cooperation between the two systems.

C. Adaptive and Constant-rate Communication Transmissions

In this subsection, we evaluate the performance of two communication transmission schemes, namely, adaptive

transmission with different Rxl’s for all l ∈ N+
L , and constant-rate transmission with only one identical Rx. We

use the following parameter setting: Mt,R = 16,Mr,R = Mt,C = 8,Mr,C = 2, C = 10 bits/symbol, PC = 64 and

PR = 1000 × PC . For the G1 and G2, Rayleigh fading is used with fixed σ2
G1

and varying σ2
G2

. The results of

ESINR, MC relative recovery error and the relative target RCS estimation RMSE for different values of σ2
G2

are

shown in Fig. 6. The value of σ2
G2

varies from 0.05 to 0.5, which effectively simulates different distances between

the communication transmitter and the radar receiver. It is clear that the adaptive communication transmission

outperforms the constant-rate counterpart under various values of interference channel strength. As discussed in

Section IV-C, the adaptive communication transmission can fully exploit the channel diversity of G2l introduced

by the radar sub-sampling procedure. The price for the performance advantages is high complexity. The average
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Fig. 6: Comparison of spectrum sharing with adaptive and constant-rate communication transmissions under different

levels of variance of the interference channel from the communication transmitter to the radar receiver. Mt,R =

16,Mr,R = Mt,C = 8,Mr,C = 2.

running times for the adaptive and constant-rate communication transmissions are respectively 15.6 and 4.8 seconds.

The choice between these two transmission schemes can be made depending on the available computing resources.

D. MIMO-MC Radars and Traditional MIMO Radars
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Fig. 7: Comparison of spectrum sharing with traditional MIMO radars and MIMO-MC radars with different

subsampling rates p. Mt,R = 16,Mr,R = Mt,C = 8,Mr,C = 2.

In this subsection, we present a simulation to show the advantages of MIMO-MC radars compared to the traditional

full-sampled MIMO radars. The parameters are the same as those in the previous simulation but with fixed σ2
G1

= 0.3

and σ2
G2

= 1, which indicates strong mutual interference, especially the interference from the communication

transmitter to the radar receiver. The radar transmit power budget PR is taken to be equal to 10×PC . We consider

two targets; one is randomly located and the other is taken to be 25◦ away. We also consider 4 randomly located

point scatterers. Fig. 7 shows the results under different MIMO-MC sub-sampling rates p. Note that full sampling

is used for the traditional MIMO radar. The MC relative recover error for the traditional radar is actually the

output distortion to signal ratio. A smaller distortion to signal ratio corresponds to a larger output SNR. For ease

of comparison, a black dashed line is used for the traditional MIMO radar. We observe that the MIMO-MC radar

achieves better performance in ESINR than the traditional radar. This is due to the fact that the communication
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system can effectively prevent its transmission from interfering the radar system when the number of actively

sampled radar RX antennas is small, i.e., sub-sampling is small. In addition, the larger ESINR of the MIMO-MC

radar results in a larger output SNR than that of the traditional radar. Furthermore, the MIMO-MC radar achieves

better target RCS estimation accuracy than the traditional radar if its sub-sampling rate is between 0.4 and 0.7. For p

larger than 0.7, the target RCS estimation accuracy achieved by the MIMO-MC radar is worse than that achieved by

the traditional radar because small ESINRs for p ≥ 0.7 introduce high distortion in the completed data matrix. The

results in Fig. 7 could be used to help the selection of radar sub-sampling rate p. For the best target RCS estimation

accuracy, p = 0.6 is the best choice, while for the biggest savings in terms of samples and similar performance as

traditional radars, p = 0.4 is the best choice. Since there is no closed form solution for the joint design problem,

it is difficult to provide a theoretical justification. Intuitively, the explanation of why p = 0.6 achieves the best

MC recovery error and RCS estimation RMSE is the following. As p gets smaller, the matrix completion is not as

accurate because there are fewer sample available. On the other hand, as p increases, the performance gets worse

because more noisy samples are used in the matrix completion (smaller ESINR). Therefore, it seems that there is

an optimum value of p, which in this case is p = 0.6.

Based on these results, we conclude that MIMO-MC radars can coexist with communication systems and achieve

better target RCS estimation than traditional radars while saving up to 60% data samples. Such significant advantage

is introduced by the sparse sensing (i.e. sub-sampling) in MIMO-MC radars as discussed in Section IV-D.

VI. CONCLUSIONS

In this paper, we have considered the co-existence of a MIMO-MC radar and a wireless MIMO communication

system by sharing a common carrier frequency. We prove the feasibility of transmit precoding for MIMO-MC

radars using random unitary waveforms. The radar transmit precoder, the radar sub-sampling scheme, and the

communication transmit covariance matrix have been jointly designed by the control center to maximize the radar

SINR while meeting certain rate and power constraints for the communication system. Random unitary waveforms

can be easily generated and updated for waveform security. We should note that the proposed joint design based

spectrum sharing method can also be applied to traditional MIMO radars, which is a special case of MIMO-MC

radars for p = 1.

The proposed joint design based spectrum sharing algorithm has been evaluated via extensive simulations.

Specifically, we have shown the superiority introduced by radar and communication cooperation in the proposed

algorithm compared to noncooperative counterparts. The proposed joint-design based spectrum sharing scheme

successfully focuses the transmit power towards the targets and nullifies the power towards the clutter. The proposed

method achieves significant improvement in ESINR, MC relative recovery error, and target RCS estimation accuracy.

We have also compared the performance and complexity of the adaptive and the constant-rate communication trans-

mission schemes for radar-communication spectrum sharing. Finally, we have provided simulation-based comparison

of MIMO-MC radars and traditional MIMO radars co-existing with communication systems. We have observed that

the MIMO-MC radar achieves better performance in terms of ESINR and output SNR. Our simulations suggest that
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MIMO-MC radars can co-exist with communication systems and achieve better target RCS estimation than traditional

radars, while saving up to 60% in data samples. Of course these advantages come at increased computations for

matrix completion.

We should note that the constraint requiring that the number of targets is smaller than the number of radar antennas

results in an inefficient usage of the MIMO radar degrees of freedom. However, the high resolution of traditional

MIMO radar is retained by MIMO-MC radars with a great reduction of sample and hardware complexity. The

considered signal model is for narrow-band waveforms. Broadband MIMO systems typically use OFDM waveforms

[16]. In such case, our proposed design still applies on individual component carriers. This will substantially expand

the application scenarios of the work in this paper. A thorough investigation will be considered in our future work.

APPENDIX A

PROOF OF THEOREM 1

Proof: The following proof extends the results in [34], [35] for the cases where the radar employs transmit

precoder P and random unitary waveform matrix S, i.e., M = VrΣVT
t PS. The following lemma is used.

Lemma 2 ( [46]). Let SN be a χ2 random variable with N degrees of freedom. Then for each t > 0

Pr
(
SN −N ≥ t

√
2N + t2

)
≤ e−t

2/2.

Denoting the rank of M by K0, it is clear that K0 is not larger than K. Recall that M has a compact SVD

given as

M = UΓVH

where U ∈ CMr,R×K0 and V ∈ CL×K0 contain the left and right singular vectors of M; Γ ∈ RK0×K0 is diagonal

containing the singular values. Consider the QR decomposition of Vr and STPTVt:

Vr = QrRr,

STPTVt = QtRt,

where Qr ∈ CMr,R×K and Qt ∈ CL×K0 are with orthonormal columns, Rr ∈ CK×K is upper triangular, and

Rt ∈ CK0×K has an upper staircase form. The matrix RrΣRT
t ∈ CK×K0 is full column rank with a compact

SVD given by U1Γ1V
H
1 , where U1 ∈ CK×K0 , V1 ∈ CK0×K0 , UH

1 U1 = VH
1 V1 = IK0 , and Γ1 is diagonal,

containing the singular values of RrΣRT
t . Therefore, we have

M = QrU1Γ1V
H
1 QT

t = QrU1Γ1(Q∗tV1)H ,

which is a valid SVD of M. The uniqueness of singular value of a matrix indicates that Γ ≡ Γ1. Therefore, we

can choose U = QrU1 and V = Q∗tV1. We have

µ(U) =
Mr,R

K0
sup

m∈N+
Mr,R

‖(Qr)m·U1‖22

≤ Mr,R

K0
sup

m∈N+
Mr,R

‖(Qr)m·‖
2
2 =

K

K0
µr0,

(20)
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where µ̃t0 is defined in Theorem 1. µr0 is the upper bound on µ(U) derived in [35, Theorem 2]. We also have

µ(V ) =
L

K0
sup
l∈N+

L

‖(Q∗t )l·V1‖22 =
L

K0
sup
l∈N+

L

‖(Qt)l·‖
2
2.

If K0 is strictly smaller than K, we can not represent Qt in terms of STPTVt and Rt because of the singularity of

Rt. To conquer this, we apply column permutations F on Rt to bring forward the first non-zero elements in each

row RtF =
(
R1 R2

)
such that R1 ∈ CK0×K0 is square, upper triangular and invertible. The QR decomposition

STPTVt can be re-written as

STPTVtF = Qt

(
R1 R2

)
.

We can represent Qt as

Qt = STPTVtFK0
R−1

1 ,

where FK0
denotes the first K0 columns of F. Substituting Qt into µ(V ), we obtain

µ(V ) =
L

K0
sup
l∈N+

L

‖
(
ST
)
l·P

TVtFK0
R−1

1 ‖22

=
L

K0
sup
l∈N+

L

(
ST
)
l·P

TVtFK0
R−1

1

(
R−1

1

)H
FHK0

VH
t P∗ (S∗)·l

(21)

We can show that
R−1

1

(
R−1

1

)H
=
(
RH

1 R1

)−1
=
(
RH

1 QH
t QtR1

)−1

=
(
FHK0

VH
t P∗S∗STPTVtFK0

)−1

=
(
FHK0

VH
t P∗PTVtFK0

)−1

(22)

where the last equality holds because SSH = IMt,R
. Consider the QR decomposition of PTVtFK0

given by

PTVtFK0
= QaRa, (23)

where Qa ∈ CMt,R×K0 contains orthonormal columns, and Ra ∈ CK0×K0 is upper triangular and full rank.

Substituting (22) and (23) into (21), we have

µ(V ) =
L

K0
sup
l∈N+

L

sTl Ra

(
RH
a Ra

)−1
RH
a s∗l

=
L

K
sup
l∈N+

L

sTl s∗l =
L

K
sup
l∈N+

L

‖sl‖22
(24)

where sl , QT
a S·l, and the second equality holds because Ra is invertible. Based on [78, Theorem 3], if

Mt,R = O(L/ lnL), the entries of S can be approximated by i.i.d Gaussian random variables with distribution

CN (0, 1/L). Since Qa has orthonormal columns, sl ∈ CK0 ,∀l ∈ N+
L also contains i.i.d Gaussian random variable

with distribution CN (0, 1/L), and L‖sl‖22 is distributed according to χ2
K0

. Based on Lemma 2 setting t =
√

6 lnL,

it holds that

Pr
(
L‖sl‖22 ≥ K0 + 2

√
3K0 lnL+ 6 lnL

)
≤ L−3. (25)

Applying the union bound, we have

Pr

(
sup
l∈N+

L

‖sl‖22 ≥
K0 + 2

√
3K0 lnL+ 6 lnL

L

)
≤ L−2. (26)
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Combining (24) and (26) gives

Pr

(
µ(V ) ≥ K0 + 2

√
3K lnL+ 6 lnL

K0

)
≤ L−2. (27)

From the derivation, the bound on µ(V ) holds for any target angles, array geometry, and precoding matrix P as

long as PTVtFK0 is with full column rank K0. Theorem 1 is proved.

APPENDIX B

DERIVATION OF ESP AND EIP IN (8) AND (9)

The derivation of ESP is shown as bellow
ESP , E

{
Tr
(
Ω ◦ (DPS)

(
Ω ◦ (DPS)H

))}
= E

{
Tr
{[∑

k
βkΩ ◦ (DkPS)

] [∑
k
βkΩ ◦ (DkPS)H

]}}
= E

{
Tr
{∑

k

∑
j
βkβjΩ ◦ (DkPS)

[
Ω ◦ (DjPS)H

]}}
= Tr

{∑
k

∑
j
E{βkβj}

[∑
l
∆lDkPE{slsHl }PHDH

j ∆l

]}
(a)
=Tr

{∑
k
σ2
βk

[∑
l
∆lDkΦDH

k ∆l

]}
(b)
=Tr

(∑
k
σ2
βk∆DkΦDH

k

)
= Tr

(
Φ
∑

k
σ2
βkDH

k ∆Dk

)
= Tr

(
Φ
∑

k
σ2
βkv∗

t (θk)v
H
r (θk)∆vr(θk)v

T
t (θk)

)
(c)
=pLMr,RTr

(
Φ
∑

k
σ2
βkv∗

t (θk)v
T
t (θk)

)
= pLMr,RTr (ΦDt)

where Dk , vr(θk)vTt (θk), sl , s(l). (a) follows from the fact that E{βkβj} = δjkσ
2
βk

; (b) follows from the fact

that ∆l = ∆l∆l and ∆ =
∑L
l=1 ∆l; (c) follows from the fact that vHr (θk)∆vr(θk) = ‖∆‖1 = pLMr,R. The

derivation for EIP is similar and is omitted for brevity.

APPENDIX C

PROOF OF PROPOSITION 2

Proof: If C < Cmax(PC), the feasible set for {Rxl} determined by constraints in (10a) and (10b) F{Rxl} is

nonempty as long as Tr(Φ) is sufficiently small. If ξ ≤ ξmax, the feasible set for Φ determined by constraints in

(10c) FΦ1 is nonempty and has no restriction on Tr(Φ). If Φ ∈ FΦ1, then αΦ ∈ FΦ1,∀α > 0. The overall feasible

set for Φ, FΦ, is the intersection of feasible sets determined by (10a), (10b) and (10c). FΦ is nonempty as long

as FΦ1 and F{Rxl} are nonempty because we can choose any Φ ∈ FΦ1 and scale it down to make (P1) feasible.

The claim is proven.

APPENDIX D

PROOF OF LEMMA 1

Proof: For simplicity of notation, we denote that X , G1ΦGH
1 + σ2

CI � 0 and Y , HRxlH
H � 0. It is

easy to see that A is Hermitian because both X−1 and (X + Y)−1 are Hermitian. It is sufficient to show that
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Z , X−1 − (X + Y)−1 is positive semidefinite. We have that

X−1 − (X + Y)−1 = X−1Y(X + Y)−1,

which could be shown by right multiplying (X + Y) on both sides of the equality. Since X, Y and Z are Hermitian,

we have

Z = X−1Y(X + Y)−1 = (X + Y)−1YX−1.

Since (X + Y)−1 is invertible, there exists a unique positive definite matrix V, such that (X + Y)−1 = V2. Simple

algebra manipulation shows that
V−1ZV−1 = (V−1X−1V−1)(VYV)

= (VYV)(V−1X−1V−1),

i.e., V−1ZV−1 is a product of two commutable positive semidefinite matrices V−1X−1V−1 and VYV. Therefore,

V−1ZV−1 and thus Z is positive semidefinite. We prove that Al is semidefinite. Further, A is also semidefinte

because it is the sum of L semidefinite matrices.

APPENDIX E

PROOF OF PROPOSITION 4

Proof: Problem (18) is an SDP, whose Karush-Kuhn-Tucker (KKT) conditions are given as

Ψ + λ2Dt +

K∑
k=1

νkVk = I + λ1A + λ2γCt +

K∑
k=1

νkξI (28a)

ΨΦ = 0 (28b)

Ψ � 0,Φ � 0, λ1 ≥ 0,λ2 ≥ 0, {νk} ≥ 0 (28c)

Tr(ΦDt) ≥ γTr(ΦC) + γρ (28d)

Tr(ΦVk) ≥ 0,∀k ∈ N+
K (28e)

where Ψ � 0, λ1 ≥ 0, λ2 ≥ 0, and {νk} ≥ 0 are dual variables. We can rewrite (28a) as follows

rank(Ψ) + rank

(
λ2Dt +

K∑
k=1

νkv
∗
t (θk)vTt (θk)

)

≥ rank

(
I + λ1A + λ2γCt +

K∑
k=1

νkξI

)
.

(29)

Recall that Dt =
∑
k σ

2
βk

v∗t (θk)vTt (θk). It is clear to see that λ2Dt +
∑K
k=1 νkv

∗
t (θk)vTt (θk) has rank at most K.

Since A and C are positive semidefinite, the matrix on right hand side of (29) has full rank. Therefore, rank(Ψ)

is not smaller than Mt,R −K. From (28b) and (28d) we conclude that any optimal solution Φ must have rank at

most K.

The second claim asserts that if there are multiple solutions with rank K, they have the same range space. This

can be proved using contradiction. Suppose that Φ∗1 and Φ∗2 are rank-K solutions of (18) and R(Φ∗1) 6= R(Φ∗2).

Based on convex theory, any convex combination of Φ∗1 and Φ∗2, saying Φ∗3 , αΦ∗1 + (1 − α)Φ∗2,∀α ∈ (0, 1),
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is also a solution of (18). However, Φ∗3 is with rank at least K + 1, which contradicts the fact that any solution

must have rank at most K. The third claim could also be proved using contradiction. Suppose that Φ∗1 and Φ∗2

are respectively rank-K solution and solution with rank smaller than K, and R(Φ∗2) \ R(Φ∗1) is nonempty. Then

any convex combination of Φ∗1 and Φ∗2, saying Φ∗3 , αΦ∗1 + (1 − α)Φ∗2,∀α ∈ (0, 1), is also a solution of (18).

However, Φ∗3 is again with rank at least K+ 1, which contradicts the fact that any solution must have rank at most

K.

The last claim on the solutions of (16) and (17) follows from Proposition 3.
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