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Abstract

In sparse sensing based distributed MIMO radars, the problem of target estimation is formulated as a sparse

vector recovery problem, where the vector to be recovered is block sparse, or equivalently, the sensing matrix is

block-diagonal and the sparse vector consists of equal-length blocks that have the same sparsity profile. This paper

derives the theoretical requirements and performance guarantees for the application of sparse recovery techniques

to this problem. The obtained theoretical results confirm previous, simulations based observations, that exploiting

the block sparsity of the target vector can further reduce the amount of measurements needed for successful target

estimation. For signal recovery, two low-complexity approaches are proposed. The first one is an ADMM-based sparse

signal recovery algorithm, which in addition to significantly reducing computations is also amenable to a parallel and

semi-distributed implementation. The second approach decouples the location and speed estimation into two separate

stages, with each stage addressing a sparse recovery problem of lower dimension while maintains high estimation

accuracy.

Index Terms

Distributed MIMO radars, sparse sensing, restricted isometry property, ADMM, decoupled estimation, computation

performance.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radars [1]–[4] have received considerable attention in recent years due to

their improved performance over traditional phase arrays. Depending on the placement of antennas, MIMO radars can

be classified into collocated [1], [2] and widely separated [3], [4]. Collocated MIMO radars exploit phase differences

in target returns induced by transmit and receive antennas, to effectively increase the array aperture and achieve

high resolution. Distributed MIMO radars enjoy spatial diversity, introduced by the multiple independents paths

between the targets and the transmit/receive antennas, and thus achieve improved target estimation performance.

By exploiting the sparsity of targets in the radar scene, sparse sensing [5]–[7] has been studied in the context of

both collocated [8]–[12], and distributed MIMO radars [13], [14]. In [13], [14], the problem of target location and
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speed estimation in distributed MIMO radars is investigated as a block sparse signal recovery problem. The target

vector contains the attenuation coefficients for all paths between the grid points and the transmit/receive antenna

pairs. If there is no target present at a certain grid point, the corresponding entries in the target vector are zero.

Since the number of targets is much smaller than the number of grid points, the target vector is sparse. The block

sparsity in the target vector arises by grouping together entries corresponding to paths between a given grid point

and all transmit/receive antenna pairs. Block matching pursuit (BMP) is applied in [13] for signal support recovery.

Simulations in [13] show that BMP outperforms the basis pursuit method, which ignores the block sparsity. The

advantage of block sparsity was also studied in [14], where a group Lasso approach was used to exploit the block

sparsity. Again, simulations in [14] show that exploiting block sparsity results in significant detection performance

gains over methods which just consider unstructured sparsity. To the best of our knowledge, there are no theoretical

works on the performance of sparse sensing based distributed MIMO radars. Although there are theoretical works

on sparse sensing based collocated MIMO radars [8]–[11], those results cannot be extended to the distributed MIMO

radar scenario.

Employing sparse signal recovery techniques in radar systems, on one hand, relieves the volume of data that needs

top be collected, but on the other hand, introduces significant computational complexity. In [14] a group Lasso with

proximal gradient algorithm (GLasso-PGA) was used, and in [15], a mixed `1/`2 norm optimization with interior

point method (L-OPT-IPM) was used. GLasso-PGA and L-OPT-IPM achieve better estimation performance than

BMP but involve higher computational complexity and require careful tuning of manually chosen parameters. The

computation becomes prohibitive as the dimension of the sparse target vector increases. The approach of [14]

exploited the block diagonal structure of the sensing matrix to propose a decomposition of the original problem

into smaller size problems, thus reducing complexity. However, the scheme of [14] did not exploit all available

structural information, such as the identical sparsity profile of the sub-vectors in the target vector.

The contribution of this paper is two-fold: (i) it provides performance guarantees for the target location and speed

estimation in sparse sensing based distributed MIMO radars, and (ii) it proposes two low-complexity approaches for

target estimation. Regarding the performance guarantees, by permuting the columns of the measurement matrix we

reformulate the block-sparse signal recovery problem into a problem in which the measurement matrix, Ψ, is block

diagonal (BD) and the sparse target vector, s, contains equal-sized blocks that have the same sparsity profile. This

reformulation facilitates restricted isometry property (RIP)-based performance analysis. Once the RIP of Ψ holds

with respect to sparse signals with the aforementioned structure, the vector s can be obtained as the solution to a

mixed `2/`1-optimization program (L-OPT) [16]. Our theoretical results confirm that the BD structure in Ψ and

the sparsity structure in s reduce the number of measurements needed for target estimation. Further, our RIP-based

analysis provides a uniform recovery guarantee, which means that once Ψ satisfies the RIP, target estimation can

be achieved with high probability even in the worst case. In relation to the literature, the proposed RIP analysis is

related to that for a Toeplitz matrix, presented in [17], except that our BD measurement matrix contains additional

complex exponential factors introduced by the moving targets.

Regarding our low complexity contribution, we first propose a fast algorithm to solve the L-OPT problem based
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on the alternating direction method of multipliers (ADMM). This ADMM based approach is amenable to parallel

implementation, which allows for reduction of running time. A semi-distributed implementation of the solution is

also discussed, in which the computations are distributed among all the receive nodes, thus obviating the need of

a powerful fusion center. Simulations validate the efficiency of the proposed algorithm and show that the proposed

algorithm is robust over a wide range of a manually chosen parameter. Another approach to lower complexity is to

reduce the dimension of the L-OPT problem. The joint location-speed space is a Cartesian product of the location

space and the speed space, which produces a high dimensional sparse target vector s. A decoupled two-stage model

is proposed to lower the problem dimension. In the first stage, we derive the sparse model for the location space

by absorbing the unknown target Doppler effect into the sparse target vector. The target locations are estimated via

sparse recovery algorithms with much lower dimension. In the second stage, the location estimates are used to greatly

reduce the dimension of the sparse model for speed estimation. The ADMM based approach can also be integrated

into both stages of the decoupled estimation framework. It is shown via simulation that the decoupled scheme

reduces both the computation and the required number of measurements, while it maintains good performance. A

related decoupled scheme was proposed in [18] for compressive sensing based step-frequency MIMO radar with

collocated antennas. The matched filtering method was used to provide an initial estimate to reduce the space

that needs to be discretized. However, while matched filtering requires large amount of measurements for high

resolution and reliable estimation, our decoupled approach, provides a high resolution initial estimate with much

fewer measurements.

The paper is organized as follows. Section II provides some background and introduces notation. The sparse

model for distributed MIMO radar system is presented in Section III. In Section IV, we derive the A-RIP of the

measurement matrix, which is used to provide the performance of L-OPT in Section V. In Section VI, an efficient

algorithm based on ADMM is proposed for the target estimation. Parallel and semi-decentralized implementation

schemes are discussed in Section VI-B. Section VII presents the decoupled location and speed estimation together

with discussions on the computation complexity and required number of measurements. Simulation results are given

in Section VIII, and conclusions are presented in Section IX.

II. BACKGROUND ON BLOCK SPARSITY

In the context of compressive sensing, the focus is to exploit the structure in the sparse signal and the measurement

matrix for improving the sparse signal recovery [19]. Block sparsity in the sparse signal was investigated in [16],

[20], [21], where the elements in the sparse signal vector appear in blocks.

Let us consider a block sparse vector s ∈ CMN with at most K nonzero blocks out of N equal-sized blocks,

i.e., M , |In|,∀n ∈ N+
N , where In is the index set for the n-th block. Let us denote by AKB the space in which

the block sparse vectors lie.

Given the noisy measurement vector z = Ψs + n with Ψ ∈ CL×NM as the measurement matrix and n ∈ CL as
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the additive noise vector, the recovery of s ∈ AKB is achieved via the following convex optimization problem

min
s

N∑
n=1

‖s[In]‖2 s.t. ‖z−Ψs‖2 ≤ ε. (1)

which is referred to as mixed `2/`1-optimization program (L-OPT) [16]. The effectiveness of using L-OPT relies

on the restricted isometry property (RIP) of Ψ with respect to vectors in A2K
B .

Definition 1 ( [22]): For a union of certain subspaces denoted by A, Ψ is said to satisfy the A-restricted isometry

property with constant δ ∈ (0, 1), in short, A-RIP(K, δ), if δ is the smallest value such that

(1− δ)‖s‖22 ≤ ‖Ψs‖22 ≤ (1 + δ)‖s‖22 (2)

holds for all s ∈ A.

The above definition is for general union of subspaces. If Ψ satisfies the RIP over A2K
B , or equivalently, if Ψ

satisfies the AB-RIP(2K, δ2K), then the next lemma shows that the solution of (1), i.e., ŝ, is a good approximation

of s.

Lemma 1 (Theorem 2 in [16]): If Ψ satisfies the AB-RIP(2K, δ2K) with δ2K <
√

2 − 1, then for the solution

of (1), ŝ, it holds that

‖ŝ− s‖2 ≤
4
√

1 + δ2K

1− (1 +
√

2)δ2K
ε , g(ε). (3)

It is shown in [16] that Gaussian measurement matrices require fewer measurements to satisfy theAB-RIP(2K, δ2K)

as compared to the number of measurements needed to satisfy the RIP(2K, δ2K). Therefore, exploiting block sparsity

in s reduces the required number of measurements for sparse recovery. In the following, we put the sparse sensing-

based MIMO radar problems into the framework of block-sparse signal recovery, and derive the AB-RIP of the

corresponding measurement matrix.

III. SIGNAL MODEL

We consider a MIMO radar system with Mt transmit nodes (TX) and Mr receive nodes (RX), which are

widely separated. Let (xti, y
t
i) and (xri , y

r
i ) denote the locations of the i-th transmit and receive antenna in cartesian

coordinates, respectively. The i-th TX antenna transmits repeated pulses with pulse repetition interval T . Each pulse

contains the modulated waveform wi(t)e
j2πfit, where fi is the carrier frequency, and wi(t) is the continuous-time

baseband waveform. We assume that transmit waveforms are jointly Gaussian with zero mean and variance σ2
0 . Let

us assume that there are K moving targets present. For simplicity, we consider a clutter-free environment [8]–[14],

[18]. In practice, preprocessing techniques can be employed to suppress the clutter. For example, if the covariance

matrix of the clutter is known, beamforming can be used to suppress the clutter [32]. Also, if the clutter is static

while the target is moving, Doppler filters [30] and the technique of change detection can be used to remove the

clutter [33], [34].

The location-speed space is discretized on grid Θ , Θloc×Θspd, where the location grid is Θloc , {(xn, yn), n =

1, . . . , N1}, N1 , Nx×Ny , and the speed grid is Θspd , {(vnx , vny ), n = 1, . . . , N2}, N2 , Nvx×Nvy . Denoting

the cardinality of Θ as N , it holds that N = N1 × N2. It is assumed that the targets fall on grid points. Let us
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denote by Ξ the set of all different transmit and receive antenna pairs. It is clear that |Ξ| = MtMr. In the sequel,

the subscript (ij) ∈ Ξ with i ∈ N+
Mt

and j ∈ N+
Mr

denotes the pair of the i-th transmit antenna and the j-th receive

antenna. Suppose that the j-th receive antenna obtains L Ts-spaced samples from each pulse transmitted by antenna

i. On stacking the samples from P pulses into vector zij it holds that [14]

zij = Ψijsij + nij , ∀(ij) ∈ Ξ, (4)

where sij =
[
s1
ij , . . . , s

N
ij

]T
, with snij being non-zero only if there is a target at the n-th grid point (here n refers to

a particular ordering of grid points of the 4-dimensional space into a vector of length N ); nij denotes the additive

noise; Ψij is defined in term of its columns, Ψn
ij , i.e.,

Ψn
ij = D(fnij)⊗wi,τnij

, ∀n ∈ N+
N , (5)

where ⊗ denotes Kronecker product,

D(fnij) ,
[
1, ej2πf

n
ijT , . . . , ej2πf

n
ijT (P−1)

]T
, (6a)

wi,τnij
,
[
wi[τ

n
ij ], . . . , wi[(L− 1)Ts + τnij ]

]T
(6b)

with wi[τnij ] denoting the sample of the i-th transmit waveform at time index τnij . τ
n
ij and fnij respectively denote

the propagation time and Doppler frequency associated with the n-th grid and the (ij)-th TX/RX antenna pair. It

holds that

fnij =

〈
(vnx , v

n
y ),dtin

〉
λi‖dtin‖2

+

〈
(vnx , v

n
y ),drjn

〉
λi‖drjn‖2

, (7)

where d
t/r
in , ((x

t/r
i , y

t/r
i ) − (xn, yn)) denotes the vector from the n-th grid to the i-th TX/RX antenna, and λi

is the carrier wavelength of the i-th transmitter. In the model based on (5), we assume that the targets are moving

relatively slowly so that the Doppler effect can be approximated as constant during one pulse, i.e., fnijLTs � 1.

In the literature, it is common to make such an assumption for pulse Doppler processing [12], [13], [30], [31].

Actually, we can show that our model works for wide range of target moving speeds by using different system

parameters. Substituting the expression of fnij in (7) into fnijLTs � 1 gives〈
(vnx , v

n
y ),dtin

〉
‖dtin‖2

+

〈
(vnx , v

n
y ),drjn

〉
‖drjn‖2

� c

LTsfi
,

Via the Cauchy-Schwarz inequality, we have ‖vn‖2 ,
√

(vnx )2 + (vny )2 � c
2LTsfi

for all n ∈ N+
N . For carrier

frequency fi = 5GHz, waveform bandwidth 10MHz, sampling frequency fs = 1/Ts = 20MHz and L = 20, the

model based on (5) is valid for target speed much smaller than 3× 104m/s, which could cover speeds as high as

transonic. By increasing the waveform bandwidth and the sampling frequency, the model would be valid even for

supersonically moving targets. In Section VIII, we choose waveform bandwidth 25MHz and sampling frequency

fs = 50MHz, thus the model would be valid if the target speed is much smaller than 7.5× 104m/s.

The fusion center collects the sample vectors from all TX/RX antenna pairs and stack them into a column vector

z of length LPMtMr, i.e.,

z =
[
(z11)T , . . . , (zMtMr )

T
]T

= Ψs + n, (8)
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where s =
[
(s11)T , . . . , (sMtMr

)T
]T
, n = [(n11)T , . . . , (nMtMr

)T ]T , and Ψ = diag(Ψ11, . . . ,ΨMtMr
).

Note that each vector sij contains zero entries except the entries corresponding to grid points occupied by targets.

Thus, the vector s is a concatenation of MtMr sub-vectors that share the same sparsity profile, and have exactly

K nonzero entries each. We can see that s lies in AK0 ⊂ CNMtMr , defined as

AK0 ,
{
y ∈ CNMtMr

∣∣y = [yT1 , . . . ,y
T
MtMr

]T ,

yj ∈ CN , supp(yi) = supp(yj),

|supp(yj)| ≤ K, ∀i, j ∈ N+
MtMr

}
,

(9)

where yj’s are uniformly partitioned blocks of y, supp(·) denotes the index set of nonzero entries of a vector, i.e.,

the support of a vector, and | · | denotes the cardinality of a set.

In the following section we provide the A-RIP analysis of the BD measurement matrix Ψ.

IV. THE A-RIP OF THE MEASUREMENT MATRIX

Let us first state two lemmas which will be used later.

Lemma 2: Let x ∈ CN and y ∈ CN be vectors with i.i.d complex Gaussian entries with zero mean and variance

σ2. Then for every 0 < t < 4σ2N , it holds that

Pr
(
‖x‖22 − E{‖x‖22} ≥ t

)
≤ e−

t2

16Nσ4 , (10a)

Pr
(∣∣‖x‖22 − E{‖x‖22}

∣∣ ≥ t) ≤ 2e−
t2

16Nσ4 . (10b)

For every t > 0 it holds that

Pr (|〈x,y〉| ≥ t) ≤ 2e
− t2

4σ2(Nσ2+t/2) . (11)

where 〈x,y〉 , xHy, and (·)H denotes Hermitian transpose.

Proof: Lemma 2 is derived based on Lemma 5 and 6 in [17]. By substituting k and t in [17, Lemma 5]

respectively by N and τ , we have Pr
(
‖x‖22 − E{‖x‖22} ≥ 2σ2

√
Nτ + 2σ2τ

)
≤ e−τ . If τ < N , then it holds that

4σ2
√
Nτ ≥ 2σ2

√
Nτ + 2σ2τ . We have

Pr
(
‖x‖22 − E{‖x‖22} ≥ 4σ2

√
Nτ
)

≤Pr
(
‖x‖22 − E{‖x‖22} ≥ 2σ2

√
Nτ + 2σ2τ

)
≤ e−τ .

Inequality (10a) is readily proved by denoting t , 4σ2
√
Nτ < 4σ2N . Similarly, we can prove inequality (10b).

Lastly, it is clear to see that (11) holds by directly substituting k in Lemma 6 in [17] by N .

Lemma 3: Let {xi} and {yi}, i = 1, . . . , Q be sequences of identically distributed, zero-mean, Gaussian variables

with variance σ2. All variables are independent except that the last I (I ∈ [1, Q)) variables of {xi} are the first I

variables of {yi}, i.e., xi+Q−I = yi for any i ∈ [1, I]. Then

Pr

(∣∣∣∣∣
Q∑
i=1

xiyi

∣∣∣∣∣ ≥ t
)
≤ 4 exp

(
− (Q− 1)t2

8Qσ2(Qσ2 + t/2)

)
.

We know that {xiyi}Qi=1 are not mutually independent. Lemma 3 can be proven by a splitting trick, as in [17].
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A. Observations on The Gram of The Normalized Ψ

Note that E{‖Ψn
ij‖22} = LPσ2

0 . Since in the compressive sensing literature measurement matrices with nor-

malized columns are typically considered, we will provide observations on the normalized measurement matrix

Ψ̄ = Ψ/
√
LPσ2

0 . The Gram of Ψ̄, denoted here by G, is also block-diagonal, i.e., G = diag(G11, . . . ,GMtMr )

where Gij = Ψ̄H
ij Ψ̄ij and Ψ̄ij , Ψij/

√
LPσ2

0 .

Consider the (n, l)-th entry in Gij . It holds that

Gij(n, l) ≡
1

LPσ2
0

〈Ψn
ij ,Ψ

l
ij〉

=
1

LPσ2
0

〈D(fnij),D(f lij)〉〈wi,τnij
,wi,τlij

〉.
(12)

The following three cases are analyzed:

Case (i) For n = l, i.e., the diagonal entries, it holds that 〈D(fnij),D(fnij)〉 = P . Now, Gij(n, n) = 1
Lσ2

0
wT
i,τnij

wi,τnij
,

which is the sum of squares of i.i.d Gaussian variables with E{Gij(n, n)} = 1. Applying (10b) in Lemma 2, it

holds that

Pr(|Gij(n, n)− 1| > t) ≤ 2 exp
(
−Lt

2

16

)
. (13)

Case(ii) the n-th and l-th grid points have different propagation delay, i.e., τnij 6= τ lij . From (12), it holds that

E{Gij(n, l)} = 0 and

|Gij(n, l)| =
1

LPσ2
0

∣∣∣wT
i,τnij

wi,τ lij

∣∣∣φfnij ,f lij (P ), (14)

where

φfnij ,flij
(P ) , |〈D(fnij),D(f lij)〉| ∈ [0, P ]. (15)

A probabilistic bound on |Gij(n, l)| can be found as

Pr
(
|Gij(n, l)| > t

)
≤ Pr

(
1

Lσ2
0

∣∣∣wT
i,τnij

wi,τlij

∣∣∣ > t

)
. (16)

Now, we only need to provide the bound on the inner product of wi,τnij
and wi,τ lij

. Note that wi,τnij
and wi,τ lij

are

both sampled from the i-th waveform, and may share some common entries. The general bound (11) in Lemma 2

referring to two distinct i.i.d random vectors cannot be applied directly. Applying Lemma 3 for (16) gives

Pr
(
|Gij(n, l)| > t

)
≤ 4 exp

(
− (L− 1)t2

8(1 + t/2)

)
. (17)

Case(iii) the n-th and l-th grid points introduce the same propagation delay (τnij = τ lij) but have different Doppler

frequencies (fnij 6= f lij). Consider the absolute value

|Gij(n, l)| =
1

LPσ2
0

wT
i,τnij

wi,τnij
φfnij ,f lij (P ), (18)

which can be viewed as the squared norm of random vector
√

1
LPσ2

0
φfnij ,f lij (P )wi,τnij

with i.i.d zero-mean Gaussian

entries with variance σ2
1 = 1

LP φfnij ,f lij (P ). Applying the unilateral bound (10a) in Lemma 2 , we have

Pr (|Gij(n, l)| > t) ≤ exp

(
− 1

L

(
t− Lσ2

1

4σ2
1

)2
)

= exp

(
− L

16

(
Pt

φfnij ,flij
(P )
− 1

)2)
≤ exp

(
−Lt

2

16

)
,

(19)
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where the last inequality holds if

P ≥ (1/t+ 1)φfnij ,f lij (P ). (20)

B. A-RIP of The Normalized Measurement Matrix

Equipped with the above observations, we will first establish the RIP of Ψ̄ with respect to sparse vectors in

AK1 ⊂ CNMtMr , which is defined as

AK1 ,
{
y ∈ CNMtMr

∣∣y = [yT1 , . . . ,y
T
MtMr

]T ,yj ∈ CN ,

|supp(yi)| = |supp(yj)| ≤ K, ∀i, j ∈ N+
MtMr

}
where yj’s are uniformly partitioned blocks of y. It holds that AK0 ⊂ AK1 .

Theorem 1: For any δK ∈ (0, 1), Ψ̄ satisfies A1-RIP(K, δK) with probability exceeding (1− 4(N
√
MtMr)

−1)

whenever

L ≥ 48δ−1
K K2 log(N

√
MtMr) + 1, (21a)

P ≥ (δ−1
K K + 1)β(P ), (21b)

where

β(P ) , sup
(ij)∈Ξ

φij(P ) , sup
fn
ij

6=fl
ij
,

(ij)∈Ξ

φfnij ,f lij (P ). (22)

Proof: See Appendix A

Note that the technique used to prove Theorem 1 can only exploit the structure characterized by AK1 , and not

the additional structure characterized by AK0 . Vectors in AK0 consist of sub-vectors that have the same support.

However, only the support cardinality of the sub-vectors matters in the proof of A-RIP presented in Appendix A.

The positions of the nonzero entries would introduce no difference to the bound for the off-diagonal entries in

(44). In the next section, the A1-RIP of Ψ̄ in Theorem 1 will be relaxed to the A0-RIP, which is further used to

guarantee the effectiveness of applying L-OPT.

Remark 1: In the proof of Theorem 1, the sparsity structures in Ψ̄ and s is exploited to reduce the required

number of measurements. To emphasize the advantage of the block-sparse structure in our scenario, we compare

to a scenario in which the block-structure is ignored, and the recovery is based on a full Toeplitz matrix of size

LMtMr × NMtMr and a sparse vector with KMtMr nonzero entries at arbitrary locations. From [17], a full

Toeplitz matrix satisfies the RIP if L is of the order of O(K2MtMr log(N
√
MtMr)), which is MtMr times larger

than the bound in (21a). Comparing that to (21a) suggests that exploiting the block sparsity reduces the number

of samples needed. This validates previous simulation-based observations [14] and results in Section VIII-B of this

paper, suggesting that exploiting the structure in both Ψ and s allows for reduction of the number of samples, L,

needed for target estimation.

Remark 2: From (21b), we know that the number of required pulses is determined by β(P ), which is the

maximum of φfnij ,f lij (P ) over the Doppler grid set for all TX/RX pairs. From the definitions in (6a) and (15), it
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holds that

β(P ) , sup
fn
ij

6=fl
ij
,

(ij)∈Ξ

∣∣∣∣∣ sin
(
πP (fnij − f lij)T

)
sin
(
π(fnij − f lij)T

) ∣∣∣∣∣ .
The quantity β(P ) is determined by the pulse repetition interval T , the number of pulses, P , and the Doppler

grid set. From the definition in (7), the Doppler grid set further depends on the speed grid set Θ2, the antennas

position and even the target location grid set Θ1. Therefore, it is rather difficult to analytically characterize β(P ).

Generally speaking, in order to increase the speed resolution, we can increase either the number of pulses, or

the pulse repetition interval. For a given MIMO radar configuration and target space discretization, we can use

numerical methods to find the minimum P that satisfies (21b). In Section VIII-A, we present an example to show

how P is chosen.

V. PERFORMANCE OF DISTRIBUTED MIMO RADARS USING SPARSE SENSING

To apply the L-OPT for the sparse model in (8), we permute the columns of Ψ and correspondingly permute

the entries of s to generate block sparsity in the target vector. Then, s is recovered by solving the problem

min

N∑
n=1

‖s[In]‖2 s.t. ‖z− PM (Ψ)Pv(s)‖2 ≤ ε0. (23)

where PM is the column permutation matrix applied on Ψ and Pv : AK0 → AKB is the corresponding permutation

operator applied on s; In, ∀n ∈ N+
N , is the set with cardinality MtMr containing the indices of the n-th entries

from all sub-vectors sij ; ε0 is a manually chosen parameter related to the norm of vector n. In the above, Pv(s) =

[s[I1], . . . , s[IN ]]T is block sparse.

The reconstructed target location-speed scene ŝ contains location and speed and target complex Radar Cross

Section (RCS) information on all K targets. Let us use as performance metric the error ‖ŝ − s‖2. As shown in

Lemma 1, the effectiveness of (23) is guaranteed if PM (Ψ) satisfies the AB-RIP(2K, δ2K). Combining with the

A-RIP analysis of Section IV, the following proposition provides an error bound when applying L-OPT for the

recovery of s, along with the requirements on the number of measurements and pulses.

Proposition 1: Consider the signal model in (8). For any δ2K <
√

2− 1, if L and P satisfy that

L ≥ 192δ−1
2KK

2 log(N
√
MtMr) + 1, (24a)

P ≥ (2δ−1
2KK + 1)β(P ), (24b)

then for any s ∈ AK0 , the error in the solution of the L-OPT problem of (23) is bounded as

‖ŝ− s‖2 ≤ g

(
ε0√
LPσ2

0

)
(25)

with probability exceeding (1− 4(N
√
MtMr)

−1).

Proof: According to Theorem 1, Ψ̄ satisfies theA1-RIP(2K, δ2K) with probability exceeding (1−4(N
√
MtMr)

−1)

under conditions:
L ≥ 48δ−1

2K(2K)2 log(N
√
MtMr) + 1,

P ≥ (δ−1
2K(2K) + 1)β(P ),
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which are obtained by substituting K and δK in (21) respectively by 2K and δ2K . As we can see, the above two

conditions are equivalent to those in (24). Since A2K
0 ⊂ A2K

1 , we know that Ψ̄ also satisfies the A0-RIP(2K, δ0
2K)

with δ0
2K ≤ δ2K . In [23, Proposition 1], we have shown that the AB-RIP of PM (Ψ̄) is equivalent to the A0-RIP

of Ψ̄. Applying Lemma 1 to (23) for the normalized measurement matrix Ψ̄ proves the claims of the proposition.

Remark 3: The significance of Proposition 1 is that it guarantees theoretically that sparse modeling and block

sparse recovery algorithms can be effectively applied to distributed MIMO radars. If there is no additive noise, i.e.,

ε0 = 0, based on (25), s can be recovered exactly. When noise is present, the performance is stable in the sense

that the estimation error is bounded for any s ∈ AK0 . In the proof of Proposition 1, the AB-RIP of PM (Ψ̄) is

established via its equivalence to the A0-RIP of Ψ̄. The direct block-RIP analysis for PM (Ψ̄) is difficult, because

PM (Ψ̄) has a complicated structure. Also, the A0-RIP of Ψ̄ is established indirectly via the A1-RIP analysis of

Ψ̄. Since A2K
0 is only a small subset of A2K

1 , the A0-RIP of Ψ̄ may be satisfied with much weaker conditions on

L and P which are required by the A1-RIP of Ψ̄. That is to say that the L-OPT in (23) may perform well with

smaller L and P than those in (24).

Remark 4: In the compressive sensing literature, there are two kinds of sparse recovery guarantees: the uniform

and non-uniform [29]. A uniform guarantee means that once Ψ satisfies the A0-RIP, target estimation can be

achieved with high probability for any s ∈ AK0 . A uniform recovery guarantee attracts a lot of research interest in

the compressive sensing literature [6], [16], [17], [22], [29] and applications in collocated MIMO radars [10], [11].

Proposition 1 provides bounds on L and P for the uniform recovery guarantee including the worst case. On the

other hand, the simulation gives the average performance for given L and P . This explains why much smaller L

and P perform well in the simulation in Section VIII. As one can see both in Theorem 1 and Preposition 1, the

bound on L scales quadratically with the sparsity level K. The quadratically scaled bound is the proved tightest

bound for many structured measurement matrices [10], [11], [17], [29]. To the best of our knowledge, Theorem

1 is the first result on the A-RIP of the measurement matrix Ψ with block diagonal structure in sparse sensing

based distributed MIMO radars, modeled via (8). Although there might be the possibility to break the quadratic

bottleneck on L, that would call for complete different techniques and it is out of the scope of this paper.

Remark 5: The L-OPT problem is convex and can be solved directly using the interior point method with

complexity ofO((NMrMt)
3). This means that the computational cost may be prohibitive if the dimension- NMtMr

is large. In the following two sections, we tackle the computation issue in two ways, namely, we propose an

ADMM-based algorithm with lower complexity (see Section VI), and we propose decoupling the location and

speed estimation, which effectively lowers the dimensionality of the problem (see Section VII).

VI. FAST SIGNAL RECOVERY BASED ON ADMM

In this section, we present an ADMM-based approach for solving the L-OPT problem for the general case of

moving targets. Preliminary results of our work, for the case of stationary targets can be found in [24].
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Note that z,Ψ, s and n are all complex. The majority of ADMM literature deals with real variables. However,

we can easily reformulate our problem with real variables as follows.

(z⊗Fv)︸ ︷︷ ︸
,z̃

= (Ψ⊗FM )︸ ︷︷ ︸
,Ψ̃

(s⊗Fv)︸ ︷︷ ︸
,s̃

+ (n⊗Fv)︸ ︷︷ ︸
,ñ

, (26)

where the operators Fv and FM are defined in terms of the real and imaginary parts of z ∈ C, i.e., respectively,

<{z} and ={z}, as follows.

Fv(z) , [<{z},={z}]T , FM (z) ,

<{z} −={z}
={z} <{z}]

 .
For any vector v, v ⊗ Fv applies the operator Fv on all the entries of v. Similarly, for any matrix M, M⊗ FM
applies the operator FM on all the entries of M. It is clear that Ψ̃ is still block diagonal with Ψ̃ij , (Ψij⊗FM ) ∈

R(2LP )×(2N) as is its (ij)-th diagonal block; and s̃ is composed by MtMr sub-vectors s̃ij , (sij ⊗ Fv) ∈ R2N

that share the same sparsity profile and have exactly 2K nonzero real entries.

The L-OPT problem corresponding to (26) is given by

min

N∑
n=1

‖s̃[In]‖2 s.t. ‖z̃− Ψ̃s̃‖2 ≤ ε0, (27)

where the set In,∀n ∈ N+
N , with cardinality 2MtMr, contains the indices of the (2n − 1)-th and (2n)-th entries

from all equal-length sub-vectors s̃ij ,∀(ij) ∈ Ξ. The equivalent unconstrained problem, known as group Lasso, is

as follows:

min
1

2
‖z̃− Ψ̃s̃‖22 + λ

N∑
n=1

‖s̃[In]‖2 (28)

where λ is the regularization parameter. The second term enforce the solution to be group sparse. If prior information

on the sparse target vector exists, it can be incorporated by introducing constraints, i.e.,

min
1

2
‖z̃− Ψ̃s̃‖22 + λ

N∑
n=1

‖s̃[In]‖2

s.t. s̃ ∈ Ω2NMtMr ,

(29)

where Ω2NMtMr can be any general convex set, determined by the prior. In this paper, we consider complex

attenuation factors with magnitude less than ω0, which means |snij | ∈ [0, ω0] , Ω. Such prior can be obtained,

for example, based on the distance between the region of interest and the TX/RX pairs. Thus, the constraint

s̃ ∈ Ω2NMtMr is satisfied if ‖
[
s̃[2i− 1], s̃[2i]

]
‖2 ∈ Ω, ∀i ∈ N+

NMtMr
, where s̃[i] denotes the i-th entry of s̃.

In the following, we use the alternating direction method of multipliers (ADMM) [25] to solve the problem.
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A. A Fast Algorithm Based on the ADMM

We introduce auxiliary variables y and x and rewrite (29) as

min
1

2
‖z̃− Ψ̃s̃‖22 +

N∑
n=1

λ‖yn‖2

s.t. yn = Dns̃, ∀n ∈ N+
N ,

x = s̃,x ∈ Ω2NMtMr ,

(30)

where Dn is the matrix of dimension (2MtMr)×(2NMtMr) that selects the entries in s̃ indexed by In; the vector

y is defined as [yT1 , . . . ,y
T
N ]T . We have y = Ds̃ where D = [DT

1 , . . . ,D
T
N ] permutates s̃ into y. The auxiliary

variable y is to isolate s̃ from the group sparsity-inducing term
∑
‖·‖2; the magnitude constraint is now imposed

on x instead of s̃.
Let us now apply the ADMM after grouping the variables into two blocks, i.e., (y,x) and s̃. The augmented

Lagrangian of the above optimization problem can be written as follows

L(s̃,y,x;µ, ν) = 1

2
‖z̃− Ψ̃s̃‖22 + νT (x− s̃) +

ρ2
2
‖x− s̃‖22

+

N∑
n=1

(
λ‖yn‖2 + µTn (yn −Dns̃) +

ρ1
2
‖yn −Dns̃‖22

)
,

(31)

where ρ1, ρ2 > 0 and µ , [µT1 , . . . , µ
T
N ]T ∈ R2NMtMr and ν ∈ R2NMtMr are the Lagrangian multipliers.

Based on the framework of ADMM, we can solve (30) by alternatively iterating over y,x and s̃. The y-subproblem

is well studied in the literature [26] and its solution is given explicitly by the shrinkage operator

yk+1
n = max

{
‖s̄kn‖2 −

λ

ρ1
, 0

}
s̄kn
‖s̄kn‖2

, ∀n ∈ N+
N , (32)

where s̄kn , Dns̃k − µkn/ρ1. In total, the computation cost of (32) scales as O(NMtMr).

For the x-subproblem, we have

xk+1 = PΩ

(
s̃k+1 − νk

ρ2

)
, (33)

where PΩ(x) projects
(
x[2i − 1],x[2i]

)
onto the region {(x, y)|x2 + y2 ≤ ω0}, ∀i ∈ N+

NMtMr
. The overall

computation of (33) involves O(NMtMr) operations.

The s̃-subproblem is a least squares problem. The minimizer is attained if

0 =
∂

∂s̃
L(s̃,yk+1,xk+1;µk, νk) = As̃− bk, (34)

where A = Ψ̃T Ψ̃ + (ρ1 + ρ2)I2NMtMr
and bk = Ψ̃T z̃ + DTµk + ρ1D

Tyk+1 + νk + ρ2x
k+1, and IN denotes

the identity matrix of dimension N ×N . The solution can be obtained by solving the following system of linear

equations

As̃k+1 = bk. (35)

Given the signal model, A is fixed for all iterations. The computational effort for bk in each iteration only involves

permutation and addition of vectors; this is because Ψ̃T z̃ is also fixed. In addition, A is block diagonal because
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Ψ̃T Ψ̃ is block diagonal. The system of (35) can be written into a set of subsystems of linear equations as follows

Ams̃k+1
m = bkm, ∀m ∈ N+

MtMr
, (36)

where Am denotes the m-th diagonal block of matrix A; vm denotes the m-th uniformly partitioned block of

vector v. From the definition of A, we know that

Am = Ψ̃T
ijΨ̃ij + (ρ1 + ρ2)I2N , ∀m ∈ N+

MtMr
, (37)

where j = bm−1
Mt
c + 1 and i = m − (j − 1)Mt. bac denotes the largest integer that is smaller than a. From the

definition of Am, it is easy to show that Am is symmetric and positive definite for any ρ1, ρ2 > 0. Therefore, each

system in (36) can be solved efficiently using iterative methods, such as the Preconditioned Conjugate Gradient

(PCG) method, with cost about O(N2) operations. The total number of operations to solve (35) is of the order of

O(N2MtMr).

Finally, the update for multipliers µ and ν can be carried out as

νk+1 = νk + ρ2(xk+1 − s̃k+1), (38a)

µk+1 = µk + ρ1(yk+1 −Ds̃k+1), (38b)

with linear complexity O(NMtMr).

The convergence of the above iterations is guaranteed by results in the ADMM literature [25]. The iterations stop

when the decrease of the objective value in (29) drops below certain threshold or the number of iterations exceeds

certain value.

Remark 6: The bounds on L and P of Proposition 1 apply to (27) and (28) exactly in the same way as to

(23). The problems in (27) and (23) are identical because the transformation only involves the separation of real

and imaginary parts. Also, (28) is equivalent to (27) because (28) and (27) are the dual problems of each other.

It can be shown using convex analysis techniques [28] that for any λ > 0 the solution of (28) is a minimizer of

(27) for certain ε0. The same bounds on L and P of Proposition 1 also guarantee to solve (29), which result in a

smaller recovery error than (23). The bounded constraint in (29) reduces the feasible set in (23) by incorporating

prior information on s. This means that the solution of (29) is at least as accurate as that of (23) with the same

conditions on L and P of Proposition 1. As shown in the simulations, the additional constraint indeed improves

the accuracy of the solution over other methods that also use the same L and P .

Remark 7: The advantages of the proposed algorithm can be summarized as follows. First, the computational

cost is low. As we know, solving (30) using an interior point method would involve O((NMtMr)
3) operations

[27]. For the proposed algorithm, the computational cost in each iteration is dominated by solving the system of

linear equations (35), which is O(N2MtMr). The reduction of computations is more significant as the number

of antennas increases. Second, the estimation accuracy of s is improved by introducing the amplitude constraints

on the sparse target vector. Also, the performance is robust over wide range of regularization parameter λ. This

is validated via simulations in Section VIII. Lastly, due to the block diagonal structure in Ψ, the update of s̃k+1
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in (35) can be achieved by updating independent sub-vectors in s̃k+1. The good separability in the update of all

variables affords a parallel and decentralized implementation, as discussed in the next section.

B. Parallel and Semi-distributed Implementation

1) Parallel Implementation: In the (k + 1)th iteration, it is clear that all pairs (xk[2i − 1],xk[2i]) in xk are

updated independent of the others, thus, the computations can be done in parallel. A similar parallel scheme applies

to µk and νk, and the update of ykn. The subsystems in (36) can also be solved in parallel. Assuming that there

are multiple computing units available at the fusion center, the target estimation running time can be significantly

reduced. The parallel implementation here is different from the decoupled Lasso of [14], because here, the identical

sparsity profile in the sub-vectors of the target vector is utilized via the auxiliary variable y.

2) Fusion Center Aided Semi-Distributed Implementation: The ADMM based approach described in Section

VI-A requires a fusion center to perform all the computations. However, a semi-distributed implementation is also

possible. For each iteration, x (respectively for s and ν) can be divided into blocks, each of which can be updated

locally at the receive antenna. However, the update of y and µ cannot be done locally. A fusion center performs

the update of y and µ.

The fusion center aided semi-distributed scheme is summarized in Algorithm 1. In the implementation of

Algorithm 1, s̃k+1
m ∈ R2N (respectively for νk+1

m ,xk+1
m ), ∀m ∈ N+

MtMr
, denotes the m-th block of uniformly

partitioned s̃k+1. yk+1
m ∈ RN denotes the m-th block of uniformly partitioned DTyk+1. The receive node j

updates xk+1
m , νk+1

m and sk+1
m for all m ∈ Tj , {(j − 1)Mt + i|i ∈ N+

Mt
}. The fusion center updates y and µ.

Thus, the computation cost is O(N2Mt) at each node and O(NMtMr) at the fusion center. One can see that

the computations are distributed among all receive nodes. The computation and memory required by the fusion

center is only linear in the dimension of sparse vector y, which is significantly lower than that of the fusion center

of Section VI-A. Thus, even one of the receivers can be assigned to serve as the fusion center, and perform the

update of y and µ. In each iteration, each node communicates s̃k+1
m and yk+1

m to the fusion center. However, the

communication load decreases in a few iterations, because the nonzero entries in s̃k+1
m and yk+1

m would be on the

order of O(K).

A fully distributed scheme would also be possible, but would require consensus. However, consensus-based

implementations converge slowly, which would be a problem in target estimation and tracking applications.

VII. DECOUPLED LOCATION AND SPEED ESTIMATION

Instead of jointly estimating the target location-speed in the discretized location-speed space Θ = Θloc ×Θspd

(dimension N = N1×N2) we can decouple the estimation into target location estimation and the speed estimation.

As it will be shown, such decoupling lowers complexity and required fewer measurements.

A. The Decoupled Signal Model

First, we describe the sparse model in the discretized target location space, Θloc, of dimension N1, where

N1 � N . For target location estimation, it suffices to collect the measurements from one pulse only. During the
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Algorithm 1 Semi-Distributed Implementation

One peer receive node is chosen as the fusion center.

Input Ψ̃, z̃, λ, ρ1, ρ2

Initialization s̃(0) = x(0) = y(0) = 0, µ(0) = ν(0) = 0

Iteration

Fusion Center:

compute yk+1
n , ∀n ∈ N+

N by (32);

Node j ∈ N+
Mr

: for all m ∈ Tj
download yk+1

m from the fusion center;

compute xk+1
m = PΩ(s̃k+1

m − νkm/ρ2);

compute s̃k+1
m by solving (36);

compute νk+1
m = νkm + ρ2(xk+1

m − s̃k+1
m );

upload s̃k+1
m to the fusion center;

Fusion Center:

compute µk+1 by (38b);

p-th pulse (for some fixed p), the sample vector zpij ∈ CL, corresponding to the (ij)-th TX/RX antenna pair node

pair, equals

zpij = Ψp
ijs

p
ij + npij , ∀(ij) ∈ Ξ, (39)

where npij ∈ CL denotes the additive noise. The matrix Ψp
ij ∈ RL×N1 has wi,τnij

as its n-th column. The vector

spij ∈ CN1 is K-sparse and its n-th entry equals spij(n) = βkije
2πfkijT (p−1), if there is a target at the n-th grid point

(here βkij is the corresponding target reflectivity); otherwise it equals 0. For slowly moving targets, the Doppler

effect can be approximated as constant during one pulse, thus, the Doppler effect here is absorbed into spij . At the

fusion center, the sample vector corresponding to the p-th pulse, formed based on all TX/RX pairs, zp ∈ CLMtMr ,

equals

zp =
[
(zp11)T , . . . , (zpMtMr

)T
]T

= Ψpsp + np, (40)

where sp =
[
(sp11)T , . . . , (spMtMr

)T
]T
, np = [(np11)T , . . . , (npMtMr

)T ]T , and Ψp = diag(Ψp
11, . . . ,Ψ

p
MtMr

).

The location vector sp can be recovered by applying the L-OPT method of Section II. The recovery performance

is given in the following proposition.

Proposition 2: Consider the location estimation model in (40). For any δ2K <
√

2− 1, if L is such that

L ≥ 192δ−1
2KK

2 log(N1

√
MtMr) + 1, (41)

then the error of the L-OPT solution, ŝp, is bounded as ‖ŝp − sp‖2 ≤ g
(
εp/
√
Lσ2

0

)
with probability exceeding

(1− 4(N1

√
MtMr)

−1).
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The proof of Proposition 2 follows the same spirit as that of Proposition 1. The key is to show that Ψp satisfies

the A1-RIP(2K, δ2K) given the conditions on L, which can be proven along the lines of Section IV.

Once we obtain the target locations from ŝp, we can use them to reduce the dimension of the speed estimation

problem. Let Θloc,I be the pruned target location space. If the number of targets, K, is known, then Θloc,I consists

of the grid points corresponding to the K largest entries of the recovered spij . If K is unknown, we keep a slightly

larger portion of the location grid points in Θloc,I . The sparse model in (8) can be applied for Θloc,I×Θspd instead

of the entire space Θ. On denoting K̃ , |Θloc,I |, it holds that K̃ ∼ O(K) � N1. The number of measurements

can also be reduced due to the lower dimension of the location-speed space Θloc,I ×Θspd. During each pulse, the

(ij)-th TX/RX pair will only use L̃� L measurements.

Let us denote by Ir the index set that selects L̃P measurements during all P pulses, and by Ic the index set

that selects Θloc,I ×Θspd out of Θ. The sparse model for speed estimation becomes

zIr = ΨIsIc + nIr , (42)

where zIr ∈ CL̃PMtMr consists of entries of {zij}(ij)∈Ξ indexed by Ir, and similarly for sIc ∈ CK̃N2MtMr and

nIr ∈ CL̃PMtMr ; ΨI ∈ CL̃PMtMr×K̃N2MtMr is the corresponding block diagonal matrix. The diagonal blocks

of ΨI consist of rows and columns of {Ψij}(ij)∈Ξ respectively indexed by Ir and Ic. Note that sIc can be

uniformly partitioned into MtMr K-sparse sub-vectors, which share the same sparse profile. The final location-

speed estimation can be achieved based on sIc , by solving an L-OPT problem (see (42)).

B. Complexity and Discussion

The decoupled location and speed estimation scheme needs to solve two sparse recovery problems. If the interior

point method is adopted to solve the L-OPT problems, the total computation cost would be O((N1MtMr)
3 +

(K̃N2MtMr)
3). Recall that solving (8) using the interior point method requires cost of O((N1N2MtMr)

3). The

computation saving comes from the lower dimensions of the decoupled scheme than that of the original problem in

(8). Moreover, in (40), the measurement matrix Ψp is block diagonal, and the sparse vector sp has group sparsity.

Thus, the ADMM-based algorithm in Section VI can be used to recover sp. It is easy to show that the Gram matrix

of Ψp is block diagonal, symmetric and positive semidefinite. The computation of the ADMM-based algorithm

will be O(N2
1MtMr). Similarly for (42), the ADMM-based algorithm can also be used to recover sIc with cost

O(K̃2N2
2MtMr). The decoupled location and speed estimation using the ADMM further reduces the computational

complexity. The parallel technique (or semi-distributed implementation) can also be applied here to distribute the

computations among multiple processors (or receiver nodes).

The decoupled scheme requires LMtMr measurements from the p-th pulse for location estimation and (P −

1)L̃MtMr from the rest (P − 1) pulses for the final speed estimation. Thus, the receivers can operate at sampling

frequency 1/Ts during the first pulse, and reduce the sampling frequency to L̃
LTs

thereafter. Compared to the joint

estimation scheme, less measurements are needed.

July 6, 2015 DRAFT



17

Given fixed amount of measurements, the estimation performance is better for smaller location-speed space

Θloc,I ×Θspd once it contains the location grid points possessed by targets. Since the dimension of Θloc,I ×Θspd

is controlled by K̃, it is expected that the estimation error achieves the minimum when K̃ = K if the locations

of K targets are estimated correctly in the first stage. We will show in the simulation that this happens even for

reasonable low SNRs. It is also shown that the estimation error of the decouple scheme with partial measurements

may even be lower than that of the joint scheme using all the measurements.

VIII. NUMERICAL RESULTS

We consider a MIMO radar system with Mt TX and Mr RX antennas, distributed uniformly on a circle of radius

of 6, 000m and 3, 000m, respectively. Each TX radar transmits pulses with pulse repetition interval 0.125 ms and

5GHz carrier frequency. The variance of Gaussian waveform is σ2
0 = 1. Each RX radar works with sampling

frequency of 50MHz on the received baseband signal, which are corrupted by zero-mean Gaussian noise with

variance σ2
n. The signal-to-noise ratio (SNR) is defined as 10 log10(σ2

0/σ
2
n).

The probing space is discretized on a Nx×Ny grid, starting from point [8000m, 8000m] with grid spacing equal

to 10m. The velocity space in default is fixed as a uniform 4× 1 grid on vx ∈ [100, 130]m/s, vy = 100m/s i.e.,

Nvx = 4, Nvy = 1, unless otherwise is stated. We randomly generate K targets on the grid. The magnitude of the

complex reflection coefficients for each target in each trial is randomly generated from uniform distribution in the

range of [0.1, 0.8].

All the simulations are carried out on a PC with Intel Core i7 CPU and 8GB memory. The number of independent

trials is 100 unless otherwise stated.

A. On The Number of Pulses P

We first illustrate the choice of the number of pulses P via the inequality β(P )/P ≤ δ2K/(2K+δ2K)|δ2K=
√

2−1 ,

γ0 when only a single target is considered, i.e., K = 1. We consider Mt = 2,Mr = 4. For the case of

Nx = 25, Ny = 4, Fig. 1 shows values of φij(P )/P for all TX/RX pairs under different values of P . We

choose the smallest P such that the maximum of φij(P )/P , ∀(ij) ∈ Ξ, is smaller than γ0, i.e., β(P )/P ≤ γ0.

Based on Proposition 1, this value guarantees the performance under the worst cases. In the following simulation,

we will show that even a smaller P works well.

B. The Advantage of Exploiting Group Sparsity

It can be seen from Theorem 1 that exploiting the sparsity in the target vector reduces the required measurements,

or equivalently, it improves the performance with the same amount of measurements. In this simulation, we evaluate

the advantage of exploiting the sparsity structure in the target vector. We consider Mt = 2,Mr = 4, Nx = 25 and

Ny = 4. For the proposed L-OPT based method in (23), we use the interior point method with ε0 = 2
√
LMtMrσn

[15]. For comparison, we implement BPDN which just minimizes the `1-norm of s and ignores the sparsity structure

in s. The constraint in BPDN is exactly the same as that for L-OPT method. The parameter ε0 for BPDN is chosen
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Fig. 1: Results on the choice of the number of pulses, P .
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Fig. 2: An illustration of target scene estimation. The MIMO radar system has Mt = 2 receive and Mr = 4 transmit

antennas. We sample L = 50 samples per pulse from P = 6 pulses. There are K = 4 targets. The target space of

interest is with parameters Nx = 25, Ny = 4, Nvx = 4 and Nvy = 4.
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Fig. 3: Performance for the Matched Filtering (MF), the BPDN and the L-OPT methods. (a) Results under different

number of measurements and SNRs, K = 20, P = 3; (b) Results under different number of pulses and SNRs,

K = 20, L = 6.
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the same as that for L-OPT. Also, the traditional matched filtering (MF) approach [30] is also implemented for

comparison. The MF method uses the same L and P as the sparsity-based methods. The received signal is correlated

with the transmitted signal distorted by different Doppler shifts and time delays.

An illustration of target scene estimation is presented in Fig. 2. The MIMO radar system has Mt = 2 receive

and Mr = 4 transmit antennas. We sample L = 50 samples per pulse from P = 6 pulses. There are K = 4 targets.

The target space of interest is with parameters Nx = 25, Ny = 4, Nvx = 4 and Nvy = 4. The traditional MF

method has complexity of O(LPNMtMr), which is much lower compared to that of the BPDN and the L-OPT

methods. However, the target scene estimate by the MF method is corrupted by lots of false peaks. The BPDN

method achieves a relative cleaner target scene estimate, but the strong false peaks may still degrade the target

estimation results. The L-OPT method utilizes the group sparsity in s, which helps to remove the false peaks in

the estimate. It can be seen from Fig. 2 that the L-OPT method indeed achieves the best target scene estimation.

In Fig. 3(a), we plot the successful recovery rates by the MF, the BPDN and the L-OPT methods under different

number of measurements, L, and SNRs with K = 20, P = 3. The recovery rate of the L-OPT method drops

dramatically if L is smaller than 10. This observation validates the claim in Proposition 1 that L should be larger than

certain value to maintain a high probability of target location and speed estimation. Based on (24a) in Proposition

1, the bound on L is 5 × 105, which is much larger than the values of L here. As discussed in Remark 3, the

L-OPT method performs well with much smaller L and P than those in (24). In Fig. 3(b), we plot the successful

recovery rates under different number of pulses, P , with K = 20, L = 6. Similar observations can be made for the

number of pulses. From both Fig. 3(a) and (b), the successful recovery rates of the L-OPT method are higher than

those of the BPDN method under all the settings. As implied by Theorem 1, L-OPT outperforms BPDN because it

exploits the sparsity structure in s. In addition, the sparsity based methods, both the BPDN and the L-OPT methods,

outperform the traditional MF method in terms of the success rate of target estimation.

C. Efficient Algorithm Based on The ADMM

In this section, we evaluate the efficient algorithm based on the ADMM proposed in Section VI-A. We consider

the same simulation setting in Section VIII-B except that the SNR is set to be 5 dB. The dimension of the target

vector in (26) is 6400×1 with 16×K nonzero entries. The BOMP [13] method, the GLasso-PGA method [14] and

the L-OPT method using the interior point method (L-OPT-IPM) are implemented for comparison. For GLasso-

PGA, we choose λ = 0.02 for the best performance. For L-OPT-IPM, we set ε0 = 2
√
LPMtMrσn with knowledge

of σ2
n = σ2

01010/SNR. For the proposed ADMM based method, preconditioned conjugate gradient is used to solve

the system of (35). The estimation error ‖ŝ− s‖2 and the CPU running time are used as the performance metrics.

All results are averaged over 100 independent trials.

We first fix K = 10, P = 3 and evaluate the root of total squared error ‖ŝ − s‖2 under different number of

measurements L. The results are plotted in Fig. 4. The proposed algorithm, labeled as ADMM-based in the legend,

achieves lower estimation errors with less CPU run time as compared to GLasso-PGA and L-OPT-IPM under all

L’s. The CPU run time of the proposed algorithm remains less than 10s, while the run time of L-OPT-IPM grows
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Fig. 4: Performance under different number of measurements with K = 10 and P = 3; for GLasso-PGA λ = 0.02;

and for the proposed ADMM-based method λ = 4, ρ1 = ρ2 = 1.

superlinearly with L. We should note that the L-OPT-IPM solves the problem of (23), while the ADMM method

solves the problem of (29). Compared to the problem of (23), there is an additional bounded constraint in (29),

which changes the optimization problem. The additional constraint in (29) imposes a smaller feasible set, which

may introduce the denoising effect because the noise-corrupted candidates outside the feasible set are excluded. In

contrast, the solution of (23) obtained by the L-OPT-IPM method may fall out of the feasible set in (29). As shown

in Fig. 4, the additional constraint in (29) improves the accuracy of the solution with the same L and P over the

L-OPT-IPM method.

Next, we consider the performance of the proposed scheme for different number of targets and fixed number

of measurements L = 20 and pulses P = 3. The results are plotted in Fig. 5. For all values of K, the proposed

ADMM-based algorithm achieves lower estimation errors than the GLasso-PGA method using around one quarter

CPU running time.

Fig. 6 shows the performance of the proposed scheme for different number of pulses and fixed number of

measurements L = 10 and targets K = 10. The ADMM-based method achieves the smallest estimation errors, and

takes much less CPU runtime than the GLasso-PGA method does.

It is noted that the MF method takes much less CPU runtime compared to the sparsity based methods because

its complexity is O(LPNMtMr). However, the sparsity based methods achieve lower estimation errors and higher

success rates at the cost of complexity increase.

In the above simulation, L-OPT-IPM requires knowledge of the noise variance σ2
n. The regularization parameter λ

in GLasso-PGA and the proposed algorithm also need to be manually tuned. In fact, the choice of such parameters

are critical for the estimation performance. In Fig. 7, we plot the estimation errors for a wide range of λ. We

observe that the estimation error of the proposed ADMM-based algorithm remains very small for a wide range

of λ’s, while for GLasso-PGA, the range of good λ’s is very narrow. The robustness to λ makes the proposed

algorithm good candidate for real world applications.
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Fig. 5: Performance under different number of targets with L = 20 and P = 3; for GLasso-PGA λ = 0.02; and

for the proposed ADMM-based method λ = 4, ρ1 = ρ2 = 1.
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Fig. 6: Performance under different number of pulses with K = 10 and L = 10; for GLasso-PGA λ = 0.02; and

for the proposed ADMM-based method λ = 4, ρ1 = ρ2 = 1.

D. The Performance of the Decoupled Scheme

In this section, we evaluate the performance of the decouple scheme proposed in Section VII under different

values of L̃ and K̃. Recall that K̃ is the number of location grid points kept after the location estimation stage, and

L̃ is the number of measurements used to achieve final location and speed estimation in the second stage. We aim

to illustrate the extent to which K̃ and L̃ can be reduced. For comparison, the joint location and speed estimation
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Fig. 7: Performance under different values of λ with K = 10, L = 20 and P = 3.
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is implemented using the ADMM-based algorithm in Section VI, which is referred to as the joint scheme. We

consider Mt = 2,Mr = 4, Nx = 25 and Ny = 4. The number of targets, measurements and pulses are fixed as

K = 10, L = 50, and P = 3. The performance metrics used in this subsection are the successful recovery rate,

root of the total squared error, and the CPU running time.

Fig. 8 shows the performance under different values of L̃. The performance of the joint scheme remains constant

and serves as the reference because it is not affected by L̃. As for the decoupled scheme, the successful recovery

rate goes up if more number of measurements are used. Also, the estimation accuracy of s increases when more

measurements are used. The success rate and the estimation error of the decoupled scheme become very close to

that of the joint scheme when only L̃ = 20 out of L = 50 measurements (40%) are used. The location and speed

estimation is correct with high probability even when we only keep 20% the measurements. The running time of

the decoupled scheme is less than one tenth of that of the joint scheme. Note that the decoupled scheme estimation

error becomes even smaller than that of the joint scheme when L̃ is large enough. It is because that the dimension

of the location-speed space in the second stage of the decoupled scheme is much smaller than that used in the joint

scheme, i.e., K̃N2 � N1N2.

The performance results under different values of K̃ are plotted in Fig. 9. The success rate results in Fig. 9(a)

show that the success rate of the decouple scheme is 100% even if K̃ = K. This means that the location estimation

is accurate and stable in noise (5dB and 0dB are shown in the figure). The estimation error results in Fig. 9(b)

indicate that the error is large if K̃ is smaller that K. If K̃ is set properly larger than K, the estimation error of

the decoupled scheme is lower than that of the joint scheme. Also, note that once the correct location grid points

are kept, the smaller the K̃ is, the smaller the dimension of the pruned space in the decoupled scheme is, and thus

the smaller the estimation error is.

Based on the simulations in the subsection, we conclude that the decoupled scheme can reduce both the

computation and the required number of measurements, while maintaining high estimation accuracy in practice.
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Fig. 8: Performance of the decoupled scheme under different values of L̃ with K̃ = 2K. (a) the successful recovery

rate, (b) the estimation error, and (c) the CPU running time per trial in seconds.
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Fig. 9: Performance of the decouple scheme under different values of K̃ with L̃ = 0.8L. (a) the successful recovery

rate, (b) the estimation error, and (c) the CPU running time per trial in seconds.

E. Off-grid targets and grid refinement

In all the previous simulations, all targets are assumed to be on the grid. In this section, we consider the case

in which the targets may be between the grid points. For a certain target space, a dense grid would generate a

problem with large dimension, the solution of which would demand high computational cost. On the other hand,

a coarse grid would introduce large estimation errors. One could use the grid refinement scheme [27] to reduce

the complexity while maintaining estimation performance. Let us consider the location and velocity estimation of

K = 4 moving targets. The true target parameters are given in the second row of Table I. The target space of

interest is x ∈ [8000, 8200], y ∈ [8000, 8100], vx ∈ [100, 180] and vy ∈ [100, 140]. In a dense uniform grid Θd

with Nx = 41, Ny = 21, Nvx = 9 and Nvy = 5, the location and velocity grid spacings would be 5m and 10m/s,

respectively, for which all targets fall on the grid. However, the corresponding total number of grid points and

the dimension of the sparse target vector s are N = 38745 and NMtMr = 309960, respectively. It is too time

demanding to estimate targets using Θd. We instead use a three-level grid refinement scheme. An initial coarse grid

Θc with Nx = 11, Ny = 6, Nvx = 5 and Nvy = 3 is used to discretize the target space, which reduces the total

number of grid points to 990. The location and velocity grid spacings are 20m and 20m/s, respectively. Note that

for this grid, all four targets fall between grid points. The first round estimate ŝ1 is obtained from the reconstructed

target vector using the L-OPT method and Θc. A refined grid Θr is generated in the neighborhood of the dominant

peaks in ŝ1 with location grid spacing 10m and velocity grid spacing 10m/s. The total number of grid points

in the refined grid is 2153, which is still very small compared to that of Θd. Note that all four targets still fall

off the refined grid. The second round estimate ŝ2 is obtained and the grid refinement procedure is repeated for a

second time. Finally, we obtain the third round estimate ŝ3 using a further refined grid Θr′ with 2924 grid points,

5m location grid spacing and 10m/s velocity grid spacing. The true and estimated target scenes in the location

space are shown in Fig. 10, where the vectors ŝ1, ŝ2 and ŝ3 are mapped onto grid Θd by interpolating with zeroes.

The estimated target locations and velocities are given in Table I. We observe that the grid refinement scheme

can effectively reduce the computational complexity and achieve accurate target estimation. Also, in the first two
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Fig. 10: The estimated target scene in location space by a three-level grid refinement scheme.

TABLE I: The estimated target locations and velocities by a three-level grid refinement scheme. The results are

given in the form of [x, y, vx, vy] with metrics m and m/s respectively for location and velocity.

Target 1 Target 2 Target 3 Target 4

True [8025,8015,120,100 ] [8085,8035,140,120] [8125,8055,160,120] [8185,8075,180,140]

1st estimate [8020,8020,120,100 ] [8080,8040,140,120] [8120,8060,160,120] [8180,8080,180,140]

2nd estimate [8020,8020,120,100 ] [8080,8040,140,120] [8120,8060,160,120] [8180,8080,180,140]

3rd estimate [8025,8015,120,100 ] [8085,8035,140,120] [8125,8055,160,120] [8185,8075,180,140]

rounds, the off-grid targets are captured by the closest grid points. This indicates that the proposed methods are

robust to off-grid targets.

IX. CONCLUSIONS

We have considered moving target estimation using distributed, sparsity based MIMO radars. We have provided

the uniform recovery guarantee by analyzing the A-RIP of the block diagonal measurement matrix. The proposed

theoretical results validate that the structures in both Ψ and s result in reduction of the number of measurements

needed, or result in improved target estimation for the same L.

Two low-complexity approaches have been proposed to reduce the computation while maintaining the estimation

performance. The first approach was an ADMM-based sparse signal recovery algorithm. Simulation results have

indicated that this approach significantly lowers the computational complexity for target estimation with improved

accuracy as compared to the approaches using proximal gradient algorithm and interior point method. The second

approach decouples the location and speed estimation into two separate stages. The location estimation obtained

in the first stage is used to prune the target location-speed space in the speed estimation stage. Simulations have

indicated that the decoupled scheme can reduce both the computation and the required number of measurements,

while maintaining high estimation accuracy.
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APPENDIX A

PROOF OF THEOREM 1

Proof: Here we only focuss on the bounds for the off-diagonal entries in the Gram of Ψ̄, G = Ψ̄HΨ̄. For the

diagonal entries, i.e., n = l as in case (i), the union bound can be easily obtained based on (13).

The off-diagonal entries may be from either case (ii) or case (iii). In order to arrive at a uniform union bound,

we need to unify the bounds in (17) and (19) for these two cases. Inequality (17) for case (ii) can be relaxed as

Pr (|Gij(n, l)| > t) ≤ 4 exp

(
−L− 1

16
t2
)
. (43)

Under condition (20), the probabilistic bound in (19) for case (iii) can be relaxed to the same as that in (43) for

case (ii).

Following the classical procedure of RIP analysis in [17], we need to evaluate the radii of the Gergošin’s discs

for the sub-matrix of G constructed based on the support of s. Recall that Ψ̄ is block diagonal and there are

only K nonzero entries in each sub-vector sij in s. Therefore, there are only (K − 1) instead of (K − 1)MtMr

off-diagonal entries contributing to the radii of the Gergošin’s discs. This reduction comes from the BD structure

of Ψ̃ and the sparsity profile of s characterized by AK1 . Here we choose δd , δK
K and δo ,

(K−1)δK
K . Substituting

t with δo/(K − 1) in (43) gives the unified bound for any of the off-diagonal entries, i.e.,

Pr
(
|Gij(n, l)| >

δK
K

)
≤ 4 exp

(
− (L− 1)δ2K

16K2

)
. (44)

under the condition of (21b), which is derived by substituting t = δK/K into (20). Following the steps of [17] the

proof follows.
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