RIP Analysis of the Measurement Matrix for Compressive Sensing-Based MIMO Radars

Overview

- This paper considers range-angle-Doppler estimation in collocated, compressive sensing-based MIMO (CS-MIMO) radars with arbitrary array configuration.
- In the literature, the effectiveness of CS-MIMO radars has been studied mostly via simulations. Existing theoretical results for MIMO radars with linear arrays cannot be easily extended to arbitrary array configurations.
- This paper analyzes the restricted isometry property (RIP) of the measurement matrix.
- A scheme is proposed that selects the subset of receive antennas with the smallest cardinality that meet the RIP conditions.

System Model

Consider the collocated MIMO radar system of [1, Section] II]. The range-angle-Doppler space is discretized on the grid $\mathcal{T} \times \Theta \times \mathcal{D}$ with $|\mathcal{T}| = N_{\tau}, |\Theta| = N_{\theta}, |\mathcal{D}| = N_f$. The M_t transmitted waveforms are Gaussian signals with variance $\sigma_0^2 = 1/L$. The fusion center collects the samples from all M_r receivers and P pulses and stacks them into vector $\mathbf{z} \in \mathbb{C}^{LPM_r}$. The model obeys

$$\mathbf{z} = \mathbf{\Psi}\mathbf{s} + \mathbf{n}, \qquad (1)$$

where $\mathbf{s} \in \mathbb{C}^{N_{\tau}N_{\theta}N_{f}}$ denotes the sparse target vector

associated with the *n*-th grid point.

indicate targets present

 $\Psi \in \mathbb{C}^{(LPM_r) \times (N_\tau N_\theta N_f)}$ is the measurement matrix with *n*-th column $\Psi_n = \mathbf{v}_r(\theta_n) \otimes \{\mathbf{D}(f_n) \otimes [\mathbf{X}_{\tau_n} \mathbf{v}_t(\theta_n)]\}.$

 $\mathbf{v}_{r/t}(\theta_n)$ receive/transmit steering vector

 $\mathbf{D}(f_n) \quad \text{Doppler vector} \left[1, e^{j2\pi f_n T_p}, \dots, e^{j2\pi f_n T_p (P-1)}\right]^T$ wavoform matrix [v X

$$\tau_n$$
 waveform matrix $[\mathbf{x}_{1,\tau_n}, \dots, \mathbf{x}_{M_t,\tau_n}]$

 \mathbf{x}_{m,τ_n} the *m*-th waveform shifted by τ_n θ_n, τ_n, f_n denote angle, delay and Doppler frequency

The restricted isometry property (RIP) of Ψ plays an important role in guaranteeing the recoverability and estimation performance of **s**.

Bo Li and Athina P. Petropulu

Electrical & Computer Engineering, Rutgers, The State University of New Jersey {paul.bo.li, athinap}@rutgers.edu *Work supported by ONR under grant N00014-12-1-0036*

Observations on the Gram of Normalized Ψ

The Gram of normalized Ψ equals $\mathbf{G} = \frac{\Psi^H \Psi}{M_t M_r P}$ with $\mathbf{G}_{nl} = \frac{\langle \Psi_n, \Psi_l \rangle}{M_t M_r P}$ where $\langle \Psi_n, \Psi_l \rangle = \langle \mathbf{v}_r(\theta_n), \mathbf{v}_r(\theta_n) \rangle \langle \mathbf{D}(f_n), \mathbf{D}(f_l) \rangle \langle \mathbf{X}_{\tau_n} \mathbf{v}_t(\theta_n), \mathbf{X}_{\tau_l} \mathbf{v}_t(\theta_l) \rangle.$ To bound the entries of **G**, we have four cases • **Case (i)**: for the diagonal entries, i.e., n = l, $\Pr\left(\left|\frac{\|\Psi_n\|_2^2}{M_t M_r P} - 1\right| > t\right) \le 2\exp\left(-\frac{Lt^2}{16}\right)$ • **Case (ii)**: for $\tau_n \neq \tau_l$, we have $\Pr\left(\left|\frac{\langle \Psi_n, \Psi_l \rangle}{M_t M_r P}\right| > t\right) \le 4 \exp\left(-\frac{Lt^2}{4+4t}\right)$ • **Case (iii)**: for $\tau_n = \tau_l, \theta_n \neq \theta_l$, we have $\Pr\left(\left|\frac{\langle \Psi_n, \Psi_l \rangle}{M_t M_r P}\right| > t\right) \le 4 \exp\left(-\frac{Lt^2}{4C_1 + 2C_2 t}\right)$ where C_1 and C_2 are constants, which holds if $M_t M_r \ge 2/t \phi_{\theta_n, \theta_l}(M_r) \phi_{\theta_n, \theta_l}(M_t).$ • **Case (iv)**: for $\tau_n = \tau_l, \theta_n = \theta_l, f_n \neq f_l$, we have $\Pr\left(\left|\frac{\langle \Psi_n, \Psi_l \rangle}{M_t M_r P}\right| > t\right) \le \exp\left(-\frac{Lt^2}{10}\right)$ $P \ge \sqrt{2}(1/t+1)\phi_{f_n,f_1}(P)$. as long as In the above,

$$\phi_{\theta_n,\theta_l}(M_o) \equiv |\langle \mathbf{v}_o(\theta_n), \mathbf{v}_o(\theta_l) \rangle|, o \in \{r, t\}, \\ \phi_{f_n,f_l}(P) \equiv |\langle \mathbf{D}(f_n), \mathbf{D}(f_l) \rangle|.$$

Based on these bounds the following theorem holds.

Measurement Matrix Satisfying The RIP

Theorem 1: Let $\widetilde{\Psi} \equiv \Psi / \sqrt{M_t M_r P}$. For any $\delta_K \in (0, 1)$, there exist C_1 such that $\widetilde{\Psi}$ satisfies RIP of order K with probability parameter δ_K with exceeding $1 - 4(N_{\tau}N_{\theta}N_{f})^{-1}$ whenever $L \geq C_0 \delta_{\kappa}^{-2} K^2 \log(N_{\tau} N_{\theta} N_f),$ (2a)

$$M_{t}M_{r} \geq 2\delta_{K}^{-1}K\beta_{\Theta}(M_{t}, M_{r}), \qquad (2b)$$

$$P \geq \sqrt{2}(\delta_{K}^{-1}K + 1)\beta_{D}(P), \qquad (2c)$$
where $\beta_{\Theta}(M_{t}, M_{r}) \equiv \sup_{\substack{\theta_{n}, \theta_{l} \in \Theta, n \neq l}} \phi_{\theta_{n}, \theta_{l}}(M_{t})\phi_{\theta_{n}, \theta_{l}}(M_{r})$ and
$$\beta_{D}(P) \equiv \sup_{\substack{f_{n}, f_{l} \in D, n \neq l}} \phi_{f_{n}, f_{l}}(P).$$

Remark: Theorem 1 characterizes the RIP of normalized Ψ under the conditions of (2) for arbitrary array configuration and grid set $T \times \Theta \times D$.

TX 🕇

2504 RX

Figure 1 shows the result by choosing the $M_r = 30$ largest entries of the solution of (P1) while (2b) is satisfied.

Nodes Selection

In the CS-MIMO radar literature, the virtual ULA MIMO radars in [2] require that $M_t M_r$ equals the cardinality of Θ . Random linear array MIMO radars require that $M_t M_r \propto K^2 \log^2 N_{\theta}$ [3]. In this paper, we propose a scheme to minimize the number of selected receive nodes w.r.t the nodes' positions, under the condition of (2b).

Given a very dense array of M receive nodes at positions $\tilde{\mathbf{y}}$, we assign a weight $w_m \in [0,1]$ and solve

(P1) min
$$\mathbf{1}^T \mathbf{w} \equiv [1, \dots, 1] [w_1, \dots, w_M]^T$$

s.t.
$$\sup_{\substack{\theta_n, \theta_l \in \Theta \\ \mathbf{h}^T \mathbf{h$$

 $\mathbf{1}^T \mathbf{w} \geq 4, 0 \leq w_m \leq 1, m \in \mathbb{N}_M^+$ A suboptimal sensor selection set can be generated from the solution of (25), by taking its M_r largest entries.

Remark: It is similar to optimize w.r.t the transmit array given a fixed receive array.

Numerical Example

The receive nodes are chosen from 0.1λ -spaced ULA with 250 nodes. We consider K = 3 targets in the angular region $\sin \theta \in$ [0, 0.15] discretized uniformly with interval $\Delta_{\sin\theta} = 0.001$.

Fig. 1. Positions of the 30 selected nodes by the proposed scheme. For comparison, the virtual array setup in [2] requires $M_r = 50$. The random array in [3] requires $M_t M_r \ge 2121$. It is clear that our method produces CS-MIMO radars with the fewest nodes.

References

[1] Y. Yu, A. P. Petropulu, H. V. Poor, "CSSF MIMO RADAR: Compressive-Sensing" and Step-Frequency Based MIMO Radar," IEEE Trans. Aero. Electronic Syst., vol.48, no.2, pp.1490-1504, Apr. 2012.

[2] T. Strohmer and B. Friedlander, "Analysis of Sparse MIMO Radar," arXiv preprint, arXiv:1203.2690 (2012).

[3] M. Rossi, A. M. Haimovich, and Y. C. Eldar, "Spatial Compressive Sensing for MIMO Radar," IEEE Trans. Signal Process., vol.62, no.2, pp. 419–430, Jan. 2014.