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Overview 

RIP Analysis of the Measurement Matrix for Compressive Sensing-Based MIMO Radars 

System Model 

• This paper considers range-angle-Doppler estimation 
in collocated, compressive sensing-based MIMO (CS-
MIMO) radars with arbitrary array configuration. 
 

• In the literature, the effectiveness of CS-MIMO radars 
has been studied mostly via simulations. Existing 
theoretical results for MIMO radars with linear arrays 
cannot be easily extended to arbitrary array 
configurations.  
 

• This paper analyzes the restricted isometry property 
(RIP) of the measurement matrix.  
 

• A scheme is proposed that selects the subset of receive 
antennas with the smallest cardinality that meet the 
RIP conditions. 
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Measurement Matrix Satisfying The RIP 

Theorem 1: Let  ≡ / 𝑀𝑡𝑀𝑟𝑃. For any 𝛿𝐾 ∈ 0, 1 , 

there exist C1 such that   satisfies RIP of order 𝐾 with 
parameter 𝛿𝐾 with probability exceeding 

1 − 4 𝑁𝜏𝑁𝜃𝑁𝑓
−1

 whenever  

𝐿 ≥ 𝐶0𝛿𝐾
−2𝐾2log 𝑁𝜏𝑁𝜃𝑁𝑓 ,                (2𝑎) 

𝑀𝑡𝑀𝑟 ≥ 2𝛿𝐾
−1𝐾𝛽Θ 𝑀𝑡, 𝑀𝑟 ,                2𝑏  

𝑃 ≥ 2 𝛿𝐾
−1𝐾 + 1 𝛽𝐷 𝑃 ,           (2𝑐) 

where  𝛽Θ 𝑀𝑡, 𝑀𝑟 ≡ sup
𝜃𝑛,𝜃𝑙∈Θ,𝑛≠𝑙

𝜙𝜃𝑛,𝜃𝑙(𝑀𝑡)𝜙𝜃𝑛,𝜃𝑙(𝑀𝑟) and 

𝛽𝐷 𝑃 ≡ sup
𝑓𝑛,𝑓𝑙∈𝐷,𝑛≠𝑙

𝜙𝑓𝑛,𝑓𝑙 𝑃 . 

Remark: Theorem 1 characterizes the RIP of normalized 
  under the conditions of (2) for arbitrary array 
configuration and grid set  × Θ ×. 

Nodes Selection 

In the CS-MIMO radar literature, the virtual ULA MIMO radars 
in [2] require that 𝑀𝑡𝑀𝑟 equals the cardinality of Θ. Random 
linear array MIMO radars require that 𝑀𝑡𝑀𝑟 ∝ 𝐾2log2𝑁𝜃 [3].  
In this paper, we propose a scheme to minimize the number of 
selected receive nodes w.r.t the nodes’ positions, under the 
condition of (2b). 
Given a very dense array of 𝑀 receive nodes at positions 𝐲 , we 
assign a weight 𝑤𝑚 ∈ 0,1  and solve 

(𝑃1)  min
𝐰

𝟏𝑇𝐰 ≡ 1,… , 1 𝑤1, … , 𝑤𝑀
𝑇 

𝑠. 𝑡. sup
𝜃𝑛,𝜃𝑙∈Θ

𝜙𝜃𝑛,𝜃𝑙 𝑀𝑡 𝑓(𝐰) ≤
𝑀𝑡𝛿𝐾
2𝐾

𝟏𝑇𝐰 

𝟏𝑇𝐰 ≥ 4, 0 ≤ 𝑤𝑚 ≤ 1,𝑚 ∈ 𝑀
+  

A suboptimal sensor selection set can be generated from the 
solution of (25), by taking its 𝑀𝑟 largest entries. 
Remark: It is similar to optimize w.r.t the transmit array given 
a fixed receive array. 

 Observations on the Gram of Normalized  

Consider the collocated MIMO radar system of [1, Section 
II]. The range-angle-Doppler space is discretized on the 
grid  × Θ × with  = 𝑁𝜏, Θ = 𝑁𝜃 ,  = 𝑁𝑓. The 𝑀𝑡 

transmitted waveforms are Gaussian signals with 
variance 𝜎0

2 = 1/𝐿 . The fusion center collects the 
samples from all 𝑀𝑟  receivers and 𝑃 pulses and stacks 
them into vector 𝐳 ∈ 𝐿𝑃𝑀𝑟 . The model obeys 

𝐳 = 𝐬 + 𝐧,  (1) 
where 𝐬 ∈ 𝑁𝜏𝑁𝜃𝑁𝑓  denotes the sparse target vector  
 
 
 
 

 ∈  𝐿𝑃𝑀𝑟 × 𝑁𝜏𝑁𝜃𝑁𝑓  is the measurement matrix with  
𝑛-th column 𝑛 = 𝐯𝑟 𝜃𝑛 ⊗ 𝐃 𝑓𝑛 ⊗ 𝐗𝜏𝑛𝐯𝑡 𝜃𝑛 . 

    𝐯𝑟/𝑡 𝜃𝑛   receive/transmit steering vector 

     𝐃 𝑓𝑛       Doppler vector 1, 𝑒𝑗2𝜋𝑓𝑛𝑇𝑝 , … , 𝑒𝑗2𝜋𝑓𝑛𝑇𝑝 (𝑃−1)
𝑇

 

     𝐗𝜏𝑛           waveform matrix [𝐱1,𝜏𝑛 , … , 𝐱𝑀𝑡,𝜏𝑛]  

     𝐱𝑚,𝜏𝑛      the 𝑚-th waveform shifted by 𝜏𝑛  

𝜃𝑛, 𝜏𝑛 ,  𝑓𝑛 denote angle, delay and Doppler frequency 
associated with the 𝑛-th grid point.  
 

The restricted isometry property (RIP) of  plays an 

important role in guaranteeing the recoverability and 
estimation performance of 𝐬. 

Numerical Example 

The receive nodes are chosen 
from 0.1λ-spaced ULA with 250 
nodes. We consider 𝐾 = 3 targets 
in the angular region sin 𝜃 ∈
 [0, 0.15]  discretized uniformly 
with interval Δsin𝜃 = 0.001. 

Figure 1 shows the result by choosing the 𝑀𝑟 = 30 largest 
entries of the solution of (P1) while (2b) is satisfied. 

… 

Nonzero entries 
indicate targets 
present 

𝐬 : 
1    2   3    4    …   𝑛    …    𝑁𝜏𝑁𝜃𝑁𝑓 

The Gram of normalized   equals 𝐆 =
𝐻
𝑀𝑡𝑀𝑟𝑃

 with 

𝐆𝑛𝑙 =
𝑛,𝑙

𝑀𝑡𝑀𝑟𝑃
  where  

𝑛,𝑙 = 𝐯𝑟 𝜃𝑛 , 𝐯𝑟 𝜃𝑛 𝐃 𝑓𝑛 , 𝐃 𝑓𝑙 〈𝐗𝜏𝑛𝐯𝑡 𝜃𝑛 , 𝐗𝜏𝑙𝐯𝑡 𝜃𝑙 〉.  

To bound the entries of 𝐆, we have four cases 
• Case (i): for the diagonal entries, i.e., 𝑛 = 𝑙,  

Pr
𝑛 𝟐

𝟐

𝑀𝑡𝑀𝑟𝑃
− 1 > 𝑡 ≤ 2 exp −

𝐿𝑡2

16
 

• Case (ii): for 𝜏𝑛 ≠ 𝜏𝑙 , we have 

Pr
𝑛,𝑙

𝑀𝑡𝑀𝑟𝑃
> 𝑡 ≤ 4 exp −

𝐿𝑡2

4 + 4𝑡
 

• Case (iii): for 𝜏𝑛 = 𝜏𝑙 , 𝜃𝑛  ≠ 𝜃𝑙 , we have 

 Pr
𝑛,𝑙

𝑀𝑡𝑀𝑟𝑃
> 𝑡 ≤ 4 exp −

𝐿𝑡2

4𝐶1+2𝐶2𝑡
 

 where 𝐶1 and 𝐶2 are constants, which holds if 
𝑀𝑡𝑀𝑟 ≥ 2/𝑡𝜙𝜃𝑛,𝜃𝑙 𝑀𝑟 𝜙𝜃𝑛,𝜃𝑙 𝑀𝑡 . 

• Case (iv): for 𝜏𝑛 = 𝜏𝑙 , 𝜃𝑛 = 𝜃𝑙 , 𝑓𝑛  ≠ 𝑓𝑙 , we have 

Pr
𝑛,𝑙

𝑀𝑡𝑀𝑟𝑃
> 𝑡 ≤ exp −

𝐿𝑡2

10
 

as long as      𝑃 ≥ 2 1/𝑡 + 1 𝜙𝑓𝑛,𝑓𝑙(𝑃) . 

In the above,  
𝜙𝜃𝑛,𝜃𝑙 𝑀𝑜 ≡ 𝐯𝑜 𝜃𝑛 , 𝐯𝑜 𝜃𝑙 , 𝑜 ∈ 𝑟, 𝑡 , 

𝜙𝑓𝑛,𝑓𝑙 𝑃 ≡ 𝐃 𝑓𝑛 , 𝐃 𝑓𝑙 . 

Based on these bounds the following theorem holds. 

Fig. 1. Positions of the 30 selected nodes by the proposed scheme. 
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25𝜆 𝑀𝑡 = 40  
TX 

… … 

0.1𝜆 

250 
RX 

For comparison, the virtual array setup in [2] requires 
𝑀𝑟 = 50. The random array in [3] requires 𝑀𝑡𝑀𝑟  ≥  2121. It 
is clear that our method produces CS-MIMO radars with the 
fewest nodes. 


