RIP Analysis of the Measurement Matrix for Compressive Sensing-Based MIMO Radars

Bo Li and Athina P. Petropulu

Electrical \& Computer Engineering, Rutgers, The State University of New Jersey
\{paul.bo.li, athinap\}@rutgers.edu
Work supported by ONR under grant N00014-12-1-0036

Overview

This paper considers range-angle-Doppler estimation in collocated, compressive sensing-based MIMO (CSMIMO) radars with arbitrary array configuration.

- In the literature, the effectiveness of CS-MIMO radars has been studied mostly via simulations. Existing theoretical results for MIMO radars with linear arrays cannot be easily extended to arbitrary array configurations.
- This paper analyzes the restricted isometry property (RIP) of the measurement matrix.
- A scheme is proposed that selects the subset of receive antennas with the smallest cardinality that meet the RIP conditions.

System Model

Consider the collocated MIMO radar system of [1, Section II]. The range-angle-Doppler space is discretized on the grid $\mathcal{T} \times \Theta \times \mathcal{D}$ with $|\mathcal{T}|=N_{\tau},|\Theta|=N_{\theta},|\mathcal{D}|=N_{f}$. The M_{t} transmitted waveforms are Gaussian signals with variance $\sigma_{0}^{2}=1 / L$. The fusion center collects the samples from all M_{r} receivers and P pulses and stacks them into vector $\mathbf{z} \in \mathbb{C}^{L P M_{r}}$. The model obeys

$$
\mathbf{z}=\mathbf{\Psi} \mathbf{s}+\mathbf{n}
$$

(1)
where $\mathbf{s} \in \mathbb{C}^{N_{\tau} N_{\theta} N_{f}}$ denotes the sparse target vector
 Nonzero entries indicate targets present
$\Psi \in \mathbb{C}^{\left(L P M_{r}\right) \times\left(N_{\tau} N_{\theta} N_{f}\right)}$ is the measurement matrix with n-th column $\mathbf{\Psi}_{n}=\mathbf{v}_{r}\left(\theta_{n}\right) \otimes\left\{\mathbf{D}\left(f_{n}\right) \otimes\left[\mathbf{X}_{\tau_{n}} \mathbf{v}_{t}\left(\theta_{n}\right)\right]\right\}$.
$\mathbf{v}_{r / t}\left(\theta_{n}\right)$ receive/transmit steering vector
$\mathbf{D}\left(f_{n}\right) \quad$ Doppler vector $\left[1, e^{j 2 \pi f_{n} T_{p}}, \ldots, e^{j 2 \pi f_{n} T_{p}(P-1)}\right]^{T}$
$\mathbf{X}_{\tau_{n}} \quad$ waveform matrix $\left[\mathbf{x}_{1, \tau_{n}}, \ldots, \mathbf{x}_{M_{t}, \tau_{n}}\right]$
$\mathbf{x}_{m, \tau_{n}}$ the m-th waveform shifted by τ_{n}
$\theta_{n}, \tau_{n}, f_{n}$ denote angle, delay and Doppler frequency associated with the n-th grid point.
The restricted isometry property (RIP) of Ψ plays an important role in guaranteeing the recoverability and estimation performance of \mathbf{s}.

Observations on the Gram of Normalized Ψ

The Gram of normalized $\boldsymbol{\Psi}$ equals $\mathbf{G}=\frac{\Psi^{H} \Psi}{M_{t} M_{r} P}$ with $\mathbf{G}_{n l}=\frac{\left\langle\mathbf{\Psi}_{n}, \mathbf{\Psi}_{l}\right\rangle}{M_{t} M_{r} P}$ where
$\left\langle\mathbf{\Psi}_{n}, \mathbf{\Psi}_{l}\right\rangle=\left\langle\mathbf{v}_{r}\left(\theta_{n}\right), \mathbf{v}_{r}\left(\theta_{n}\right)\right\rangle\left\langle\mathbf{D}\left(f_{n}\right), \mathbf{D}\left(f_{l}\right)\right\rangle\left\langle\mathbf{X}_{\tau_{n}} \mathbf{v}_{t}\left(\theta_{n}\right), \mathbf{X}_{\tau_{l}} \mathbf{v}_{t}\left(\theta_{l}\right)\right\rangle$.
To bound the entries of \mathbf{G}, we have four cases

- Case (i): for the diagonal entries, i.e., $n=l$,

$$
\operatorname{Pr}\left(\left|\frac{\left\|\Psi_{n}\right\|_{2}^{2}}{M_{t} M_{r} P}-1\right|>t\right) \leq 2 \exp \left(-\frac{L t^{2}}{16}\right)
$$

- Case (ii): for $\tau_{n} \neq \tau_{l}$, we have

$$
\operatorname{Pr}\left(\left|\frac{\left\langle\Psi_{n}, \Psi_{l}\right\rangle}{M_{t} M_{r} P}\right|>t\right) \leq 4 \exp \left(-\frac{L t^{2}}{4+4 t}\right)
$$

- Case (iii): for $\tau_{n}=\tau_{l}, \theta_{n} \neq \theta_{l}$, we have

$$
\operatorname{Pr}\left(\left|\frac{\left\langle\mathbf{\Psi}_{n}, \mathbf{\Psi}_{l}\right\rangle}{M_{t} M_{r} P}\right|>t\right) \leq 4 \exp \left(-\frac{L t^{2}}{4 C_{1}+2 C_{2} t}\right)
$$

where C_{1} and C_{2} are constants, which holds if

$$
M_{t} M_{r} \geq 2 / t \phi_{\theta_{n}, \theta_{l}}\left(M_{r}\right) \phi_{\theta_{n}, \theta_{l}}\left(M_{t}\right) .
$$

- Case (iv): for $\tau_{n}=\tau_{l}, \theta_{n}=\theta_{l}, f_{n} \neq f_{l}$, we have

$$
\operatorname{Pr}\left(\left|\frac{\left\langle\Psi_{n}, \Psi_{l}\right\rangle}{M_{t} M_{r} P}\right|>t\right) \leq \exp \left(-\frac{L t^{2}}{10}\right)
$$

as long as $\quad P \geq \sqrt{2}(1 / t+1) \phi_{f_{n}, f_{l}}(P)$.
In the above,

$$
\begin{gathered}
\phi_{\theta_{n}, \theta_{l}}\left(M_{o}\right) \equiv\left|\left\langle\mathbf{v}_{o}\left(\theta_{n}\right), \mathbf{v}_{o}\left(\theta_{l}\right)\right\rangle\right|, o \in\{r, t\}, \\
\phi_{f_{n}, f_{l}}(P) \equiv\left|\left\langle\mathbf{D}\left(f_{n}\right), \mathbf{D}\left(f_{l}\right)\right\rangle\right| .
\end{gathered}
$$

Based on these bounds the following theorem holds.

Measurement Matrix Satisfying The RIP

Theorem 1: Let $\widetilde{\Psi} \equiv \Psi / \sqrt{M_{t} M_{r} P}$. For any $\delta_{K} \in(0,1)$, there exist C_{1} such that $\widetilde{\Psi}$ satisfies RIP of order K with parameter $\quad \delta_{K}$ with probability exceeding $1-4\left(N_{\tau} N_{\theta} N_{f}\right)^{-1}$ whenever

$$
\begin{gather*}
L \geq C_{0} \delta_{K}^{-2} K^{2} \log \left(N_{\tau} N_{\theta} N_{f}\right), \tag{2a}\\
M_{t} M_{r} \geq 2 \delta_{K}^{-1} K \beta_{\Theta}\left(M_{t}, M_{r}\right), \tag{2b}\\
P \geq \sqrt{2}\left(\delta_{K}^{-1} K+1\right) \beta_{D}(P), \tag{2c}\\
\text { where } \beta_{\Theta}\left(M_{t}, M_{r}\right) \equiv \sup _{\theta_{n}, \theta_{l} \in \Theta, n \neq l} \phi_{\theta_{n}, \theta_{l}}\left(M_{t}\right) \phi_{\theta_{n}, \theta_{l}}\left(M_{r}\right) \text { and } \\
\beta_{D}(P) \sup _{f_{n}, f_{l} \in D, n \neq l} \phi_{f_{n}, f_{l}}(P) \text {. } \\
\text { Remark: Theorem } 1 \text { characterizes the RIP of normalized }
\end{gather*}
$$ Ψ under the conditions of (2) for arbitrary array configuration and grid set $\mathcal{T} \times \Theta \times \mathcal{D}$.

Nodes Selection

In the CS-MIMO radar literature, the virtual ULA MIMO radars in [2] require that $M_{t} M_{r}$ equals the cardinality of Θ. Random linear array MIMO radars require that $M_{t} M_{r} \propto K^{2} \log ^{2} N_{\theta}$ [3]. In this paper, we propose a scheme to minimize the number of selected receive nodes w.r.t the nodes' positions, under the condition of (2b).
Given a very dense array of M receive nodes at positions $\tilde{\mathbf{y}}$, we assign a weight $w_{m} \in[0,1]$ and solve
$(P 1) \min _{\mathbf{w}} \mathbf{1}^{T} \mathbf{w} \equiv[1, \ldots, 1]\left[w_{1}, \ldots, w_{M}\right]^{T}$
s.t. $\sup _{\theta_{n}, \theta_{l} \in \Theta} \phi_{\theta_{n}, \theta_{l}}\left(M_{t}\right) f(\mathbf{w}) \leq \frac{M_{t} \delta_{K}}{2 K} \mathbf{1}^{T} \mathbf{w}$
$\theta_{n}, \theta_{l} \in \Theta$
$\mathbf{1}^{T} \mathbf{w} \geq 4,0 \leq w_{m} \leq 1, m \in \mathbb{N}_{M}^{+}$
A suboptimal sensor selection set can be generated from the solution of (25), by taking its M_{r} largest entries.
Remark: It is similar to optimize w.r.t the transmit array given a fixed receive array.

Numerical Example	
	The receive nodes are chosen from 0.1λ-spaced ULA with 250 nodes. We consider $K=3$ targets in the angular region $\sin \theta \in$ [$0,0.15$] discretized uniformly with interval $\Delta_{\sin \theta}=0.001$.

Figure 1 shows the result by choosing the $M_{r}=30$ largest entries of the solution of (P1) while (2b) is satisfied.

Fig. 1. Positions of the 30 selected nodes by the proposed scheme. For comparison, the virtual array setup in [2] requires $M_{r}=50$. The random array in [3] requires $M_{t} M_{r} \geq 2121$. It is clear that our method produces CS-MIMO radars with the fewest nodes.

References

[1] Y. Yu, A. P. Petropulu, H. V. Poor, "CSSF MIMO RADAR: Compressive-Sensing and Step-Frequency Based MIMO Radar," IEEE Trans. Aero. Electronic Syst., vol.48, no.2, pp.1490-1504, Apr. 2012
[2] T. Strohmer and B. Friedlander, "Analysis of Sparse MIMO Radar," arXiv preprint, arXiv:1203.2690 (2012).
[3] M. Rossi, A. M. Haimovich, and Y. C. Eldar, "Spatial Compressive Sensing for MIMO Radar," IEEE Trans. Signal Process., vol.62, no.2, pp. 419-430, Jan. 2014.

