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Abstract—This paper considers range-angle-Doppler estima-
tion in collocated, compressive sensing-based MIMO (CS-MIMO)
radars with arbitrary array configuration. In the literature,
the effectiveness of CS-MIMO radars has been studied mostly
via simulations. Although there exist some theoretical results
for MIMO radars with linear arrays, those cannot be easily
extended to arbitrary array configurations. This paper analyzes
the restricted isometry property (RIP) of the measurement
matrix. The RIP conditions involve, among other quantities, the
number of transmit and receive antennas. A scheme is proposed
that selects the subset of receive antennas with the smallest
cardinality that meet the RIP conditions.

Index Terms—Collocated MIMO radar, sparse sensing, re-
stricted isometry property, antenna selection.

I. INTRODUCTION

Recently, compressive sensing (CS) [1] based MIMO radars
were shown to achieve the superior resolution of collocated
MIMO radars with significantly fewer measurements [2]–[4].
If there is a small number of targets in the target space,
target estimation can be formulated as a sparse signal recovery
problem. The work in [5] provided the first nonuniform
recovery guarantee for range-angle-Doppler estimation and
the corresponding bounds on the number of transmit/receive
antennas and measurements. However, the results only apply
to CS-MIMO radars with virtual uniform linear array (ULA)
configuration, i.e., Mr-element λ/2-spaced receive array and
Mt-element Mrλ/2-spaced transmit array. Also, in [5], the
angular space has to be discretized on a uniform grid with
spacing 2

MtMr
. The extension of the results of [5] to gen-

eral array configurations is nontrivial. Spatial CS for MIMO
radars with random transmit/receive array was proposed in [6],
[7] for angle estimation. A nonuniform recovery guarantee
was provided in [6], [7] based on the isotropy property of
the measurement matrix. The work in [7] also provided a
uniform recovery guarantee based on the coherence analysis
of the measurement matrix. However, the analysis cannot be
extended to the range-angle-Doppler estimation.

In this paper, we consider the range-angle-Doppler estima-
tion using CS-based collocated MIMO radars with arbitrary
array configuration. Our goal is to provide the restricted
isometry property (RIP) of the measurement matrix, which can
then be readily used to derive uniform recovery guarantees.
Towards this goal, we derive a unified upper bound on the
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entries of the Gram of the measurement matrix. To relate
this with the RIP, we adopt the well-known scheme in [9]
based on Geršgorin’s Disc Theorem, which was originally
applied for the RIP of Toeplitz matrices. The RIP conditions
involve the number and positions of the antennas. Based on
this observation, we propose a scheme that selects the subset
of receive antennas with the smallest cardinality that meet the
RIP conditions.

The paper is organized as follows: Section II introduces the
sparse model for collocated MIMO radar system. In Section
III, we present the RIP analysis of the measurement matrix.
Also, we propose an optimization scheme to minimize the
required number of receive antennas, which is validated in
Section IV. Conclusions are presented in Section V.

II. SIGNAL MODEL

Consider the collocated MIMO radar system of [4, Section
II] equipped with transmit and receive arrays with Mt and
Mr antennas, respectively. Let us assume that there are K
moving targets and that the environment is clutter free. We are
interested in target parameters including the time delay from
the transmitter to the receiver via the k-th target, i.e., τk , the
target azimuth angle, θk, and Doppler frequency, fk, for all
k ∈ N+

K . It holds that τk = 2dk/vc and fk = 2vkfc/vc, where
dk, vk, fc and vc denote target range, target radial velocity,
carrier frequency and speed of light, respectively. Without
loss of generality, we use delay instead of range. To exploit
the target space sparsity, the delay-angle-Doppler space is
discretized on the grid T ×Θ×D with |T | = Nτ , |Θ| = Nθ,
and |D| = Nf . All grid points are ordered and labeled by
the index set I , {1, . . . , NτNθNf}. It is assumed that the
targets fall on grid points.

The transmit array emits P probing pulses with pulse
repetition interval TPRI . Each receiver obtains L Ts-spaced
samples from the target returns during each pulse. The fusion
center collects the samples from all receivers and stacks them
into vector z ∈ CLPMr . From [4], the model obeys

z = Ψs + n, (1)

where n is the interference/noise vector, s ∈ CNτNθNf denotes
a sparse target vector whose K nonzero entries correspond
to the complex reflection coefficients of the targets, and
Ψ ∈ C(LPMr)×(NτNθNf ) is the measurement matrix; its n-
th column is associated with the n-th grid point as follows

Ψn =vr(θn)⊗ {D(fn)⊗ [Xτnvt(θn)]} ,∀n ∈ I, (2)



where ⊗ is the Kronecker product, vr(θ) ∈ CMr is the receive
steering vector defined as

vr(θ) ,
[
ej2π〈d

r
1,w(θ)〉/λ, . . . , ej2π〈d

r
Mr

,w(θ)〉/λ
]T
, (3)

(vt(θ) is the transmit steering vector and is respective-
ly defined) with drm , [xrm y

r
m]T denoting the two-

dimensional coordinates of the m-th receive antenna, w(θ) ,
[cos(θ) sin(θ)]T , and

D(f) ,
[
1, ej2πfTPRI , . . . , ej2πfTPRI(P−1)

]T
,

Xτ , [x1,τ , . . . ,xMt,τ ] ,

xm,τ , [xm[τ ], . . . , xm[(L− 1)Ts + τ ]]
T
, m ∈ N+

Mt

(4)

with λ and xm[t] denote, respectively, the carrier wavelength
and the sample of the m-th transmit waveform at time index
t. We assume that transmit waveforms are jointly Gaussian
with zero mean and variance σ2

0 = 1/L. We assume that
the targets are moving slowly, thus the Doppler effect can
be approximated as constant during one pulse.

The estimation of the target parameters can be achieved
by various sparse recovery algorithms, including the `1 min-
imization algorithms, or greedy algorithms. It is well-known
that the restricted isometry property (RIP) [1] of the measure-
ment matrix Ψ plays an important role on guaranteeing the
recoverability and estimation performance of s. In order to
provide the performance of CS-MIMO radars, it is essential
to characterize the RIP of Ψ.

III. MAIN RESULTS

In this section, we analyze the RIP of Ψ. Ahead of the RIP
analysis, we provide some observations on the Gram of matrix
Ψ. Let us first state one lemma which will be used later.

Lemma 1 (Lemma 5 in [9]): Let x ∈ CN and y ∈ CN be
vectors with i.i.d complex Gaussian entries with zero mean
and variance σ2. Then for every t > 0 it holds that

Pr
(
‖x‖22 − E{‖x‖22} ≥ t

)
≤ e−

t2

16Nσ4 , (5a)

Pr
(∣∣‖x‖22 − E{‖x‖22}

∣∣ ≥ t) ≤ 2e−
t2

16Nσ4 , (5b)

Pr (|〈x,y〉| ≥ t) ≤ 2e
− t2

4σ2(Nσ2+t/2) . (5c)

where 〈x,y〉 , xHy, and (·)H denotes Hermitian transpose.

A. Observations on The Gram of The Normalized Ψ

Note that E{‖Ψn‖22} = MtMrP . Since in the compres-
sive sensing literature measurement matrices with normalized
columns are typically considered, we will find bounds for
the diagonal and off-diagonal entries of G , ΨHΨ

MtMrP
, i.e.,

〈Ψn,Ψl〉
MtMrP

for all n, l ∈ I, where the inner product of two
columns of Ψ is given by

〈Ψn,Ψl〉 =〈vr(θn),vr(θl)〉〈D(fn),D(fl)〉
× 〈Xτnvt(θn),Xτlvt(θl)〉.

(6)

When (τn, θn, fn) = (τl, θl, fl), the inner product becomes
the square of the norm, i.e., ‖Ψn‖22 = MrP‖Xτnvt(θn)‖22.

For all the entries, the following four cases are considered:
Case (i) n = l: In this case, we only need to con-

sider ‖Ψn‖22 for any n ∈ I. Denote by g ∈ CL
the product Xτnvt(θn). The i-th entry of g is given by
gi = [x1[(i− 1)Ts + τn], . . . , xMt

[(i− 1)Ts + τn]] vt(θn),
which is a weighted sum of Mt i.i.d jointly Gaussian random
variables of variance 1/L. Therefore, the entries of g are
independent identical distributed according to CN (0,Mt/L).
Based on (5b) in Lemma 1, we get

Pr
(∣∣‖Ψn‖22 − E{‖Ψn‖22}

∣∣ ≥MrPt
)

= Pr
(∣∣‖g‖22 − E{‖g‖22}

∣∣ ≥ t) ≤ 2e
− Lt2

16M2
t .

(7)

Substituting E{‖g‖22} = Mt and t ≡Mtt into (7), we get

Pr
(∣∣∣∣ ‖Ψn‖22
MtMrP

− 1

∣∣∣∣ ≥ t) ≤ 2e−
Lt2

16 . (8)

Case (ii) τn 6= τl: We know that Xτnvt(θn) has i.i.d
complex Gaussian entries with zero mean and variance Mt/L;
the same holds for Xτlvt(θl). However, the sum terms in
〈Xτnvt(θn),Xτlvt(θl)〉 are no longer mutually independent.
Following the splitting trick of [5], [8], [9], we can split the
terms into two equal-sized groups, each of which only contains
mutually independent terms. Applying (5c) in Lemma 1 to
both groups of sums and using Boole’s inequality, we obtain

Pr (|〈Xτnvt(θn),Xτlvt(θl)〉| ≥ 2t) ≤ 4e
−L t2

2M2
t +2Mtt .

Combining with (6), we get

Pr (|〈Ψn,Ψl〉| ≥ 2MrPt)

≤ Pr (|〈Ψn,Ψl〉| ≥ 2tφθn,θl(Mr)φfn,fl(P ))

≤ 4e
−L t2

2M2
t +2Mtt ,

(9)

where
φθn,θl(Mr) , |〈vr(θn),vr(θl)〉| ∈ [0,Mr],

φfn,fl(P ) , |〈D(fn),D(fl)〉| ∈ [0, P ].
(10)

Substituting t in (9) by Mtt/2, we get

Pr
(∣∣∣∣ 〈Ψn,Ψl〉

MtMrP

∣∣∣∣ ≥ t) ≤ 4e−L
t2

4+4t . (11)

Case(iii) τn = τl, θn 6= θl : We need to find the bound on
|〈Xτnvt(θn),Xτnvt(θl)〉|. According to [5, Lemma 11], we
have

Pr
(∣∣〈Xτnvt(θn),Xτnvt(θl)〉 − 〈vt(θn),vt(θl)〉︸ ︷︷ ︸

,χ

∣∣ ≥Mtt

)

, Pχ ≤ 2e
−L t2

C1+C2t ,

(12)

where C1 ≈ 2.50 and C2 ≈ 7.69. It is also clear that

Pχ = Pr
(
MrP |χ|+ φθn,θl(Mr)φθn,θl(Mt)P︸ ︷︷ ︸

,A

≥ ζ
)

≥ Pr
(
|〈vr(θn),vr(θl)〉〈D(fn),D(fl)〉

(
χ+ 〈vt(θn),vt(θl)〉

)
|︸ ︷︷ ︸

,B

≥ ζ
)

= Pr (|〈Ψn,Ψl〉| ≥ ζ) ,
(13)



where ζ ,MtMrPt+ φθn,θl(Mr)φθn,θl(Mt)P and

φθn,θl(Mt) , |〈vt(θn),vt(θl)〉| ∈ [0,Mt] (14)

and the second inequality holds because

A ≥ |〈vr(θn),vr(θl)〉〈D(fn),D(fl)〉|
×
(
|χ|+ |〈vt(θn),vt(θl)〉|

)
≥ B.

If MrMtt ≥ φθn,θl(Mr)φθn,θl(Mt), it holds that
2MtMrPt ≥ ζ. Now, the bound on the inner product
can be written as

Pr (|〈Ψn,Ψl〉| ≥ 2MtMrPt) ≤ Pχ (15)

or, equivalently, if t is substituted by t/2,

Pr
(∣∣∣∣ 〈Ψn,Ψl〉

MtMrP

∣∣∣∣ ≥ t) ≤ 2e−L
t2

4C1+2C2t (16)

which holds if

MtMr ≥ 2/tφθn,θl(Mr)φθn,θl(Mt). (17)

Case(iv) τn = τl, θn = θl, fn 6= fl : Consider the absolute
value ∣∣∣∣ 〈Ψn,Ψl〉

MtMrP

∣∣∣∣ = φfn,fl(P )

MtP
‖Xτnvt(θn)‖22, (18)

where φfn,fl(P ) , |〈D(fn),D(fl)〉|. It can be viewed as the

squared norm of random vector x̃ ,
√

φfn,fl (P )

MtP
Xτnvt(θn).

The entries in x̃ are i.i.d zero-mean Gaussian with variance
σ2

1 =
φfn,fl (P )

LP . Applying the unilateral bound (5a) in Lemma
1 gives

Pr
(∣∣∣∣ 〈Ψn,Ψl〉

MtMrP

∣∣∣∣ > t

)
≤ exp

(
− 1

L

(
t− Lσ2

1

4σ2
1

)2
)

= exp

(
− L

16

(
Pt

φfn,fl(P )
− 1

)2
)
≤ exp

(
−Lt

2

10

) (19)

where the last inequality holds if

P ≥
√

2(1/t+ 1)φfn,fl(P ). (20)

B. The RIP of The Normalized Ψ

Equipped with the above observations, we are ready to prove
the theorem regarding the RIP of the measurement matrix.

Theorem 1: Let Ψ̃ be the normalized measurement matrix,
i.e., Ψ̃ = Ψ/

√
MtMrP . Then, for any δK ∈ (0, 1) there exist

constant C0 , 3(4C1 + 2C2δK), such that Ψ̃ satisfies the
RIP of order K with parameter δK with probability exceeding
(1− 4(NτnNθNf )−1), whenever

L ≥ C0δ
−2
K K2 log(NτNθNf ), (21a)

MtMr ≥ 2δ−1
K KβΘ(Mt,Mr), (21b)

P ≥
√

2
(
δ−1
K K + 1

)
βD(P ), (21c)

where βΘ(Mt,Mr) , supθn,θl∈Θ,n6=l φθn,θl(Mt)φθn,θl(Mr)

and βD(P ) , supfn,fl∈D,n6=l φfn,fl(P ).
Proof: The proof of the RIP mainly follows the spirit

of the proof in [8]. We only focuss on the bounds for the
off-diagonal entries in the Gram of Ψ̃. Here we choose

δd , δK/K and δo , (K − 1)δK/K. The bound on the
off-diagonal entries in Case (ii-iv) can be unified using (16)
based on the fact that (4C1 + 2C2t) in (16) is always larger
than (4+4t) in (11) and 10 in (19) for any t ≥ 0. Substituting
t by δo/(K − 1), i.e., δK/K, gives

Pr
(∣∣∣∣ 〈Ψn,Ψl〉

MtMrP

∣∣∣∣ ≥ δK
K

)
≤ 4e

−
Lδ2K

K2(4C1+2C2δK ) (22)

under conditions in (21b) and (21c), which are derived by sub-
stituting t = δK/K into (17) and (20), respectively. The condi-
tion in (21a) implies that Lδ2

K

K2(4C1+2C2δK) ≥ 3 log(NτNθNf ).
Following the steps of the standard scheme [9] proves the RIP.

Remark 1: Theorem 1 characterizes the RIP of normalized
Ψ under the conditions of (21) for arbitrary array configuration
and grid set T ×Θ×D. The condition in (21a) requires that the
number of measurements scales quadratically with the number
of targets and logarithmically with the number of grid points.
The conditions in (21b) and (21c) involve the number of
transmitters/receivers, the number of pulses, the number of the
targets, the geometry of the grid and the array configuration.
This dependence will be explored in the following subsection
for minimizing the number of antennas involved.

C. About βD and βΘ

In Theorem 1, the conditions of (21) are very general and
can be applied on any array configuration and grid. Next, we
look closer at the quantities βD(P ) and βΘ(Mt,Mr), which
appear in (21).

The quantity βD(P ) is determined by the pulse repetition
interval, the Doppler grid D, and the number of pulses. From
the definition in (10), it holds that

βD(P ) , sup
fn,fl∈D
n 6=l

∣∣∣∣ sin (πP (fn − fl)TPRI)
sin (π(fn − fl)TPRI)

∣∣∣∣ .
Consider the special case where D is uniform with interval
∆f = 1

PTPRI
and cardinality |D| ≤ P . In this case, βD(P ) =

0, which means that (21c) holds for any K (i.e., K might be
larger than P ). In order to increase the resolution of D, we can
increase either the number of pulses, or the pulse repetition
interval.

The quantity βΘ(Mt,Mr) is determined by the array con-
figuration, the angular grid, Θ, and the number of transmitters
/receivers. It is clear that a smaller βΘ(Mt,Mr) is prefer-
able since it requires a smaller MtMr. Thus, we seek to
minimize βΘ(Mt,Mr), or bound it by a small value. For
arbitrary transmit/receive array and Θ, it is usually difficult
to characterize βΘ(Mt,Mr) analytically. In the CS-MIMO
radar literature, some special arrays have been considered. In
particular, virtual ULA MIMO radars were considered in [5],
where Θ is uniform in the domain sin(θ) with |Θ| = MtMr

and angular grid interval ∆sin(θ) = 2
MtMr

. In this case,
βΘ(Mt,Mr) equals 0, which implies that K can be larger than
the product MtMr. However, MtMr equals the cardinality of
Θ. Random linear array MIMO radars were considered for
angle estimation in [7]; in that work, βΘ(Mt,Mr)

MtMr
is bound



from above by a small value. When the locations of transmit
/receive nodes can be assumed to be i.i.d random variables,
it was shown in [7, Theorem 2] that MtMr ∝ K2 log2(Nθ),
which is a special case of Theorem 1 for the case of random
array for angle estimation.

In the following, we propose a scheme to minimize the
number of receive nodes with respect to the nodes’ positions,
under the condition of (21b). Given the Mt-element linear
transmit array with ytm,∀m ∈ N+

Mt
and Θ, we would like to

solve the following optimization problem:

min
yr

Mr s.t. βΘ(Mt,Mr) ≤
MtMrδK

2K
(23)

where yr = [yr1, . . . , y
r
Mr

]T denotes the position vector for
the receive array. Since the yr appears in the exponent of the
receive steering vector, the optimization problem in (23) is
nonlinear, non-convex. To bypass the difficulty, we formulate
the position optimization problem as a relaxed sensor selection
problem. Specifically, given a very dense array of receive
nodes at positions ỹ , [ỹ1, . . . , ỹM ]T , we assign a Boolean
weight wm ∈ {0, 1} to each sensor and select the minimum
number of sensors by solving the following problem:

min
w

1Tw , [1, . . . , 1][w1, . . . , wM ]T

s.t. sup
θn,θl∈Θ,
n6=l

φθn,θl(Mt)f(w) ≤ MtδK
2K

1Tw

1Tw ≥ 4, wm ∈ {0, 1}, m ∈ N+
M ,

(24)

where f(w) , |〈w, ej2πỹ(sin θn−sin θl)/λ〉|, and constraint
1Tw ≥ 4 is imposed to prevent a naive zero vector solution.
To obtain a convex relaxation, we replace the non-convex
constraints wm ∈ {0, 1} by the convex constraints wm ∈ [0, 1].
Then, the relaxed sensor selection problem turns to be

min
w

1Tw

s.t. sup
θn,θl∈Θ,
n 6=l

φθn,θl(Mt)f(w) ≤ MtδK
2K

1Tw

1Tw ≥ 4, 0 ≤ wm ≤ 1,m ∈ N+
M ,

(25)

which is a SOCP problem and can be solved efficiently by
standard packages. A suboptimal sensor selection set can be
generated from w∗, the optimal solution of (25), by taking its
first Mr largest entries.

Remark 2: The proposed optimization scheme in (25) se-
lects the minimum number of receive nodes for CS-MIMO
radars satisfying condition (21b) in Theorem 1. It is similar
to optimize with respect to the transmit array given fixed
receive array. Simulation example in Section IV shows that the
CS-MIMO radars generated by the proposed scheme requires
much fewer nodes than the ULA array and random array do.

IV. AN EXAMPLE

In this section, we present one example to show the effec-
tiveness of the optimization scheme proposed in Section III-C.
We are particularly interested in K = 3 targets in the angular
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Fig. 1. Positions of the 30 selected nodes by the proposed scheme.

region sin θ ∈ [0, 0.15] discretized uniformly with interval
∆sin θ = 0.001. The transmit array is a ULA with Mt = 40
nodes and interval 25λ. The receive nodes are chosen from
0.1λ-spaced ULA with 250 nodes. The suboptimal receive
array obtained from (25) is nonuniform with Mr = 30 nodes.
The positions of the nodes are shown in Fig. 1.

For comparison, we know that the virtual array setting in
[5] requires a half-wavelength linear receive array with Mr =
50 nodes. For random array considered in [7, Theorem 2],
MtMr ≥ 2121 is required. It is clear that our method produces
CS-MIMO radars with the fewest nodes. We conclude that
our proposed optimization scheme relaxes the requirement on
MtMr in Theorem 1.

V. CONCLUSIONS

We have provided the RIP analysis for CS-MIMO radars
with arbitrary array configuration. The conditions involve
the number of antennas, targets, transmited pulses and array
geometry. Based on these conditions we have also proposed
an antenna selection scheme that minimized the number of
receive antennas.
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