	olgilar model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
0 000	0000	0000	000	0

MIMO Radar and Communication Spectrum Sharing with Clutter Mitigation

Bo Li and Athina Petropulu

Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey Work supported by NSF under Grant ECCS-1408437

May 4, 2016

Outline	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
•					
Outline					

- 2 The Coexistence Signal Model
- 3 Spectrum Sharing with Clutter Mitigation
- ④ Simulation Results
- 5 Conclusions

Outline	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
Outline					

- 2 The Coexistence Signal Model
- 3 Spectrum Sharing with Clutter Mitigation
- 4 Simulation Results
- 6 Conclusions

-∢ ≣ →

Outline O	Introduction ••••	Signal Model	Radar and Comm. Spectrum Sharing	Simulation 000	Conclusions O
Introduc	tion to MIM	O Radars			

MIMO Radar:

- independent waveforms, omnidirectional illumination
- high spatial resolution
- flexibility in waveform design

[Lackpour et al, 11], [Sodagari et al, 12]

• Radar and communication systems may coexist and overlap in the spectrum.

• Existing spectrum sharing approaches basically include three categories.

- Avoiding interference by large spatial separation.
- Dynamic spectrum access based on spectrum sensing.
- Spatial multiplexing enabled by the multiple antennas at both the radar and communication systems.

• Spatial multiplexing enabled by the multiple antennas at both the radar and communication systems

- Projecting radar waveforms onto the interference channel null space [Sodagari et al, 12].
- Spatial filtering to reject interference from the communication systems to the radar receiver [Deng et al, 13].

Existing approaches are non-cooperative.

Cooperative Spectrum Sharing

- What information should be shared and how? feasibility
- What are the performance metrics? heterogeneousness
- What is the overall objective? fairness
- What algorithm should be used? complexity

Outline	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
	000	0000	0000	000	
Outline					

2 The Coexistence Signal Model

3 Spectrum Sharing with Clutter Mitigation

④ Simulation Results

5 Conclusions

Outline O	Introduction	Signal Model ●○○○	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
The Coe	xistence Sig	nal Model			

Consider a MIMO communication system which coexists with a MIMO-MC radar system as shown below. Assumptions:

- Flat fading channel, narrow band radar and comm. signals;
- Block fading: the channels remain constant for at least one PRI;
- The two systems are time-synchronized and have the same symbol rate;
- The two systems cooperate on channel estimation and feedback.

Outline Introduction Signal Model Radar and Comm. Spectrum Sharing Simulation Conclusions 0 000 000 000 000 0 0 Received Signal by The MIMO Radar

The discrete time signal received by the radar for $I \in \mathbb{N}^+_{\tilde{\iota}}$ equals

where

- $M_{t,R}$ $M_{r,R}$, # of radar TX/RX antennas; $M_{t,C}$ $M_{r,C}$, # of comm. TX/RX antennas;
- L, length of the waveform; \tilde{L} , # of samples in one PRI; K, # of point clutters;
- $\mathbf{v}_t(\theta) \in \mathbb{C}^{M_{t,R}}$, $\mathbf{v}_r(\theta) \in \mathbb{C}^{M_{r,R}}$, TX/RX steering vectors;
- $\beta_k \sim \mathcal{CN}(0, \sigma_{\beta k}^2), \forall k \in \mathbb{N}_K$, target/clutter RCS,
- $\mathbf{P} \in \mathbb{C}^{M_{t,R} \times M_{t,R}}$, the transmit precoding matrix;
- $s(I) \in \mathbb{C}^{M_{t,R}}$, *I*-th column of coded, orthonormal MIMO radar waveform;
- $\mathbf{G}_2 \in \mathbb{C}^{M_{r,R} \times M_{t,C}}$: the interference channel communication TX antennas \rightarrow radar;
- x(1): the communication waveform.
- $e^{j\alpha_{2l}}$, the random phase offset between the MIMO radar and the comm. system. $\{\alpha_{2l}\}_{l=1}^{L}$ are distributed as $\mathcal{N}(0, \sigma_{\alpha}^{2})$, where σ_{α}^{2} is small [Razavi, 96].

9 / 23

→ Ξ →

Outline Introduction Signal Model Radar and Comm. Spectrum Sharing Simulation Conclusions 0

The discrete time signal received by the comm. system equals

$$\mathbf{y}_{C}(I) = \underbrace{\mathbf{H}\mathbf{x}(I)}_{\text{Signal}} + \underbrace{\mathbf{G}_{1}\mathbf{P}\mathbf{s}(I)e^{i\alpha_{1}(I)}}_{\text{Interference}} + \underbrace{\mathbf{w}_{C}(I)}_{\text{Noise}}, \ I \in \mathbb{N}_{\tilde{L}}^{+}, \tag{1}$$

where

- $\mathbf{H} \in \mathbb{C}^{M_{r,C} \times M_{t,C}}$: the communication channel;
- $\mathbf{G}_1 \in \mathbb{C}^{M_{r,C} \times M_{t,R}}$: the interference channel radar \rightarrow communication RX antennas;
- $\mathbf{x}(I) \sim \mathcal{CN}(0, \mathbf{R}_x)$: the communication waveform.
- $e^{j\alpha_{1l}}$, the random phase offset between the MIMO radar and the comm. system.

10 / 23

Outline	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
	000	0000	0000	000	
Previous	Work and	Contribution	n In This Work		

Method 1 [Li & Petropulu, ICASSP 2015]

- Cooperation on channel estimation and feedback.
- Directly subtract the radar interference based on **shared knowledge of radar waveform**. (Residual exists due to the random phase offset between radar and comm. systems.)
- $\bullet\,$ Design $R_{\scriptscriptstyle XI}$ to minimize interference to radar while achieving certain comm. rate
- Radar shares its waveform with the comm. system
- Precoding and clutter were not considered

Method 2 [Li & Petropulu, ICASSP 2016]

- Cooperation on channel estimation and feedback.
- $\bullet\,$ Design $R_{\scriptscriptstyle X\!/}$ and P to maximize radar SINR while achieving certain comm. rate
- Clutter was not considered

Main Contribution In This Work

- Spectrum sharing in the presence of point clutters
- An efficient algorithm based on SOCP

Outline	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
	000	0000	0000	000	
Outline					

2 The Coexistence Signal Model

3 Spectrum Sharing with Clutter Mitigation

4 Simulation Results

5 Conclusions

-∢ ≣ →

Outline O	Introduction	Signal Model	Radar and Comm. Spectrum Sharing ●○○○	Simulation	Conclusions O
Cooper	ation & Knov	vledge Shared			

- Cooperate on estimation and feedback of **G**₁ & **G**₂.
- Jointly design the \mathbf{R}_x and \mathbf{P} .

Performance Metrics

- The Communication Rate
 - The covariance of interference plus noise in two periods:

$$\mathbf{R}_{\mathsf{Cin}\prime} = \begin{cases} \mathbf{G}_{1} \mathbf{\Phi} \mathbf{G}_{1}^{H} + \sigma_{\mathcal{C}}^{2} \mathbf{I} & I \in \mathbb{N}_{L}^{+} \\ \sigma_{\mathcal{C}}^{2} \mathbf{I} & I \in \mathbb{N}_{L}^{+} \setminus \mathbb{N}_{L}^{+} \end{cases} \text{ where } \mathbf{\Phi} \triangleq \mathbf{P} \mathbf{P}^{H} / L \text{ is PSD.}$$

• A lower bound on the *instaneous* information rate $\underline{C}(\mathbf{R}_x, \mathbf{\Phi}) \triangleq \log_2 |\mathbf{I} + \mathbf{R}_{Cin/}^{-1}\mathbf{H}\mathbf{R}_x\mathbf{H}^H|$.

• The average communication rate over \tilde{L} symbols

$$C_{\text{avg}}(\mathbf{R}_{x}, \mathbf{\Phi}) \triangleq L/\tilde{L}\underline{C}(\mathbf{R}_{x}, \mathbf{\Phi}) + (1 - L/\tilde{L})\underline{C}(\mathbf{R}_{x}, \mathbf{0}),$$
(2)

- The Radar SINR
 - The clutter covariance matrix is signal dependent $\mathbf{R}_c = \sum_{k=1}^{K} \mathbf{C}_k \mathbf{\Phi} \mathbf{C}_k^H$ with $\mathbf{C}_k = \sigma_{\beta k} \mathbf{v}_r(\theta_k) \mathbf{v}_t^T(\theta_k)$.
 - The radar SINR:

SINR(
$$\mathbf{R}_x, \mathbf{\Phi}$$
) = Tr $\left((\mathbf{R}_{\text{Rin}} + \mathbf{R}_c)^{-1} \mathbf{D}_0 \mathbf{\Phi} \mathbf{D}_0^H \right),$ (3)

where $\mathbf{R}_{\text{Rin}} \triangleq \mathbf{G}_2 \mathbf{R}_x \mathbf{G}_2^H + \sigma_R^2 \mathbf{I}$ and $\mathbf{D}_0 = \sigma_{\beta 0} \mathbf{v}_r(\theta_0) \mathbf{v}_t^T(\theta_0)$.

Outline	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
			0000		
The De	sign Object	ive and Cons	straints		

The Design Objective

• Maximizing the radar signal-to-interference-plus-noise ratio (SINR) SINR($\mathbf{R}_x, \mathbf{\Phi}$)

Design Constraints

- The power budget at the radar transmitter: $LTr(\mathbf{\Phi}) \leq P_R$,
- The power budget at the communication transmitter: $\tilde{L}\mathsf{Tr}(\mathsf{R}_x) \leq P_C$,
- The requirement on the average communication rate achieved during the \tilde{L} symbol periods: $C_{avg}(\mathbf{R}_x, \mathbf{\Phi}) \geq C$.

$$(\mathbf{P}_{1}) \max_{\mathbf{R}_{x} \succeq 0, \mathbf{\Phi} \succeq 0} \text{SINR, s.t. } C_{\text{avg}}(\mathbf{R}_{x}, \mathbf{\Phi}) \ge C,$$
(4a)

$$\tilde{L}\mathrm{Tr}(\mathbf{R}_{x}) \leq P_{C}, L\mathrm{Tr}(\mathbf{\Phi}) \leq P_{R}. \tag{4b}$$

 The objective is a non-convex function of Φ. We propose to maximize a lower bound of the objective function

$$\mathsf{SINR} \geq \frac{\sigma_{\beta 0}^2 M_{r,R}^2 \mathsf{Tr}(\mathbf{\Phi} \mathbf{D}_t)}{\mathsf{Tr}(\mathbf{\Phi} \mathbf{C}) + \mathsf{Tr}(\mathbf{R}_x \mathbf{B}) + \sigma_R^2 M_{r,R}},$$
(5)

where
$$\mathbf{D}_t \triangleq \mathbf{v}_t^*(\theta_0)\mathbf{v}_t^T(\theta_0)$$
, $\mathbf{C} \triangleq \sum_{k=1}^{K} \mathbf{C}_k^H \mathbf{v}_r(\theta_0)\mathbf{v}_r^H(\theta_0)\mathbf{C}_k$ and $\mathbf{B} \triangleq \mathbf{G}_2^H \mathbf{v}_r(\theta_0)\mathbf{v}_r^H(\theta_0)\mathbf{G}_2$.

14 / 23

Outline	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
	000	0000	0000	000	

The Approximate Optimization Problem

$$(\mathbf{P}'_{1}) \max_{\mathbf{R}_{x} \succeq 0, \mathbf{\Phi} \succeq 0} \frac{\sigma_{\beta 0}^{2} M_{r,R}^{2} \operatorname{Tr}(\mathbf{\Phi} \mathbf{D}_{t})}{\operatorname{Tr}(\mathbf{\Phi} \mathbf{C}) + \operatorname{Tr}(\mathbf{R}_{x} \mathbf{B}) + \sigma_{R}^{2} M_{r,R}},$$
s.t. same constraints as(\mathbf{P}_{1}). (6)

Alternate optimization is applied to solve (\mathbf{P}'_1) .

 \bullet The alternating iteration w.r.t. $R_{\scriptscriptstyle X}$ with fixed $\Phi :$ convex, SDP

$$\min_{\mathbf{R}_{x} \geq 0} \operatorname{Tr}(\mathbf{R}_{x}\mathbf{B}) \text{ s.t. } C_{\operatorname{avg}}(\mathbf{R}_{x}, \mathbf{\Phi}) \geq C, \tilde{L}\operatorname{Tr}(\mathbf{R}_{x}) \leq P_{C}.$$
(7)

• The alternating iteration w.r.t. Φ with fixed R_x : the constraint is non-convex, solve with the sequential convex programming

$$(\mathbf{P}_{\mathbf{\Phi}}) \max_{\mathbf{\Phi} \succeq 0} \frac{\operatorname{Tr}(\mathbf{\Phi}\mathbf{D}_{t})}{\operatorname{Tr}(\mathbf{\Phi}\mathbf{C}) + \rho}, \text{ s.t. } \operatorname{Tr}(\mathbf{\Phi}\mathbf{A}) \leq \tilde{C}/L, \operatorname{Tr}(\mathbf{\Phi}) \leq P_{R}/L.$$
(8)

where $\mathbf{A} \triangleq -\left(\frac{\partial C_{avg}(\mathbf{R}_{x}, \Phi)}{\partial \Re(\Phi)}\right)_{\Phi=\bar{\Phi}}^{T}$, the constant \tilde{C} is introduced by the first order Taylor approximation of $C_{avg}(\mathbf{R}_{x}, \Phi)$, $\rho = \operatorname{Tr}(\mathbf{R}_{x}\mathbf{B}) + \sigma_{R}^{2}M_{r,R}$, and $\bar{\Phi}$ is updated as the solution of the previous repeated problem.

15 / 23

Outline	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
	000	0000	0000	000	
An Effici	ent SOCP /	Algorithm fo	r (P _Φ)		

- (\mathbf{P}_{Φ}) could be formulated as a SDP via Charnes-Cooper Transformation.
- A more efficient SOCP algorithm is proposed based on the following

Proposition 2

Suppose (P_{Φ}) is feasible. Then (P_{Φ}) always has rank one solution.

Proof: Karush-Kuhn-Tucker conditions show that the optimal solution of (P_{Φ}) must be rank one and unique.

Algorithm 1 The proposed algorithm for spectrum sharing with clutter mitigation (P'_1) .

1: Input:
$$\mathbf{D}_0, \mathbf{C}_n, \mathbf{H}, \mathbf{G}_1, \mathbf{G}_2, P_{C/R}, C, \sigma^2_{C/R}, \delta_1$$

2: Initialization:
$$\mathbf{\Phi} = \frac{P_R}{LM_{t,R}}\mathbf{I}, \mathbf{R}_x = \frac{P_C}{LM_{t,C}}\mathbf{I};$$

3: repeat

- 4: Update \mathbf{R}_{x} by solving (7) with fixed $\mathbf{\Phi}$;
- 5: Update Φ by solving a sequence of approximated problem (P_{Φ}), which is in turn achieved by bisection search and SOCP solvers;
- 6: until $|SINR^n SINR^{n-1}| < \delta_1$
- 7: **Output:** $\mathbf{R}_{x}, \mathbf{P} = \sqrt{L} (\mathbf{\Phi}^{n})^{1/2}$

Outline	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
	000	0000	0000	000	
Outline					

- 2 The Coexistence Signal Model
- 3 Spectrum Sharing with Clutter Mitigation
- ④ Simulation Results
- Conclusions

-∢ ≣ →

Outline O	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation ●○○	Conclusions
Simulation	on Setup				

- $M_{t,R} = M_{r,R} = 16, M_{t,C} = 8, M_{r,C} = 4$. $\tilde{L} = 32, L = 8, \sigma_C^2 = \sigma_R^2 = 0.01$.
- One stationary target with RCS variance $\sigma_{\beta 0}^2 = 5 \times 10^{-5}$, and eight point clutters with identical RCS variances $\sigma_{\beta}^2 \rightarrow$ clutter to noise ratio (CNR) $10 \log \sigma_{\beta}^2 / \sigma_R^2$.
- θ_0 is randomly generated; clutter scatters are with angles in $[\theta_0 20^\circ, \theta_0 10^\circ]$ and $[\theta_0 + 10^\circ, \theta_0 + 20^\circ]$.
- C = 24 bits/symbol and $P_C = \tilde{L}M_{t,C}$ (the power is normalized by the power of the radar waveform).
- G_1 and G_2 are with entries i.i.d. $\mathcal{CN}(0,0.1)$. H has entries i.i.d. $\mathcal{CN}(0,1)$.
- Methods for comparison
 - the proposed method based on SOCP "precoding with clutter mitigation (SOCP)"
 - the design of $(\mathbf{R}_x, \mathbf{\Phi})$ based on SDP "precoding with clutter mitigation (SDP)"
 - precoding without consideration of clutter
 - uniform precoding, *i.e.*, $\mathbf{P} = \sqrt{LP_R/M_{t,R}}\mathbf{I}$

Numerical Results: radar SINR vs radar TX pwoer

Figure 1: SINR performance under different values of radar TX power. CNR= 20 dB.

Precoding w/ CM > Precoding w/o CM > Uniform Precoding

• "Precoding w/o CM" focuses more power on the target than "Uniform precoding" does.

 "Precoding w/ CM" effectively reduces the power transmitted on the clutter while "Precoding w/o CM" does not.

The SOCP based precoding design outperforms the SDP based design.

Numerical Results: radar SINR vs clutter to noise ratios

Figure 2: SINR performance under different clutter to noise ratios (CNR). $P_R = 2.56 \times 10^5$.

Precoding w/ CM > Precoding w/o CM > Uniform Precoding

The SOCP based precoding design is more tractable and computationally efficient than the SDP based design.

- The SOCP based precoding design outperforms the SDP based design when CNR is larger than 10dB.
- The CPU time required by the SDP method increase dramatically with $M_{t,R}$.

Outline	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions
	000	0000	0000	000	
Outline					

- 2 The Coexistence Signal Model
- 3 Spectrum Sharing with Clutter Mitigation

4 Simulation Results

5 Conclusions

-∢ ≣ →

Outline	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions		
0	000	0000	0000	000	•		
Conclusion							

- We have proposed an efficient spectrum sharing method for a MIMO radar and a communication system operating in a scenario with clutter. The radar and communication system signals were optimally designed by minimizing a lower bound for the SINR at the radar receive antennas.
- We have shown that the radar precoder always has a rank one solution. Based on this key observation, the alternating iteration of the radar precoder has been solved by a sequence of SOCP problems, which are more efficient and tractable than applying SDP directly.
- Simulation results have shown that the proposed spectrum sharing method can effectively increase the radar SINR for various scenarios with clutter.

Outline O	Introduction	Signal Model	Radar and Comm. Spectrum Sharing	Simulation	Conclusions O
Thank Y	ou				

Thank You! Questions please

< ≣⇒

▲ 🗇 🕨 🔺