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Abstract—We address the co-existence of MIMO radars and
a MIMO communication system. Unlike previous works, we
consider a scenario in which the radar system operates in the
presence of clutter. Both the radar and the communication system
use transmit precoding. Initially, spectrum sharing is formulated
as a problem that maximizes the radar SINR subject to the com-
munication system meeting certain rate and power constraints.
Due to the dependence of the clutter on the radar precoding
matrix, the optimization with respect to the radar precoder is a
maximization of a nonconvex function over a nonconvex feasible
set. Since solving such problem is computationally intractable, we
propose to maximize a lower bound of the SINR. In the resulting
alternating maximization problem, the alternating iteration of
the communication TX covariance matrix reduces to one SDP
problem, while the iteration of the radar precoder is solved by
a sequence of SOCP problems, which are more efficient and
tractable than SDP. Simulation results validate the effectiveness
of the proposed spectrum sharing method for scenarios with
clutter.

Index Terms—MIMO radar, spectrum sharing, clutter mitiga-
tion, SOCP

I. INTRODUCTION

The operating frequency bands of communication and radar

systems often overlap, causing one system to exert interference

to the other. For example, the high UHF radar systems overlap

with GSM communication systems, and the S-band radar

systems partially overlap with Long Term Evolution (LTE) and

WiMax systems [1]–[4]. Spectrum sharing targets at enabling

radar and communication systems to share the spectrum effi-

ciently by minimizing interference effects [3]–[11]. Spectrum

sharing between MIMO radar and communication systems has

been considered in [4]–[7], where the radar interference to the

communication system is eliminated by projecting the radar

waveforms onto the null space of the interference channel

from radar to communication systems. Spatial filtering at the

radar receiver is proposed in [8] to reject interference from the

communication systems. The existing radar-communication

spectrum sharing literature addresses interference mitigation

either for the communication systems [4]–[7], or for the radar

[8]. To the best of our knowledge, co-design of radar and

communication systems for spectrum sharing was proposed

in [12]–[15] for the first time. Compared to radar design

approaches of [4]–[8], the joint design has the potential to

improve the spectrum utilization due to increased number of

design degrees of freedom. However, a clutter free scenario

was assumed in both works of [12]–[15] and [4]–[8].
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In this paper, we consider the co-design based spectrum

sharing of a MIMO radar and a communication system for a

scenario in which the radar system operates in the presence

of clutter. Both the radar and the communication system use

transmit precoding. Initially, spectrum sharing is formulated

as a problem that maximizes the radar SINR subject to

the communication system meeting certain rate and power

constraints. Usually, the joint design problem can be solved

using alternating optimization. Due to the dependence of

the clutter on radar precoding matrix, the optimization with

respect to (w.r.t.) the radar precoder is a maximization of a

nonconvex function over a nonconvex feasible set. Solving

such problem is computationally intractable and demanding.

In addition, the objective is also nonlinear and nonconvex w.r.t.

the communication covariance matrix. The joint design prob-

lem requires to solve a sequence of semidefinte programming

(SDP) problems in every alternating iteration of either design

variable; as such it has high computational complexity. As an

efficient alternative, we propose to maximize a lower bound of

the SINR. In the resulting alternating maximization problem,

the alternating iteration of the communication covariance

matrix reduces to one SDP problem. We show that the radar

precoder always has a rank one solution. Based on this key

observation, the alternating iteration of the radar precoder

is solved by a sequence of second order cone programming

(SOCP) problems, which are more efficient and tractable than

SDP problems. Simulation results validate the effectiveness

of the proposed spectrum sharing method for scenarios with

clutter.

The paper is organized as follows. Section II introduces

the coexistence model of a MIMO radar system and a com-

munication system. The proposed spectrum sharing method

is given in Section III. Numerical results and conclusions

are provided respectively in Sections IV and V. Notation:

CN (µ,Σ) denotes the circularly symmetric complex Gaussian

distribution with mean µ and covariance matrix Σ. |·| and Tr(·)
denote the matrix determinant and trace respectively. The set

N
+
L is defined as {1, . . . , L}. δij denotes the Kronecker delta.

⌊x⌋ denotes the largest integer not larger than x. AT and AH

respectively denote the transpose and Hermitian transpose.

II. SYSTEM MODELS

Consider a MIMO communication system which coexists

with a MIMO radar system as shown in Fig. 1, sharing

the same carrier frequency. The MIMO radar system uses
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Fig. 1. A MIMO communication system sharing spectrum with a colocated
MIMO radar system

Mt,R TX and Mr,R RX collocated antennas for target detec-

tion/estimation. The communication transmitter and receiver

are equipped with Mt,C and Mr,C antennas, respectively. The

communication channel is denoted as H ∈ C
Mr,C×Mt,C . The

interference channel from the radar TX antennas to the com-

munication receiver is denoted as G1 ∈ C
Mr,C×Mt,R [4], [5],

[7]; the interference channel from the communication transmit-

ter to the radar RX antennas is denoted as G2 ∈ C
Mr,R×Mt,C .

It is assumed that the channels H, G1 and G2 are block fading

[16] and perfectly known at the communication transmitter. In

practice, the channel state information can be obtained through

the transmission of pilot signals [4], [17]. The detailed signal

models for the MIMO radar and communication systems are

described in the sequel. We do not assume perfect carrier phase

synchronization between the two systems.

The MIMO radar employs narrowband orthogonal wave-

forms, each of which contains L coded sub-pulses, each of

duration Tb. Let sm , [sm1, . . . , smL]
T denote the orthogonal

code vector for the m-th TX antenna. It holds that 〈sm, sn〉 =
δmn. In this paper, we choose S as a random orthonormal

matrix [14], which is obtained through performing the Gram-

Schmidt orthogonalization on a matrix whose entries are i.i.d.

Gaussian random variables. Note that the entries of S are not

independent anymore. However, based on [18, Theorem 3], if

Mt,R = O(L/ lnL), the entries of S can be approximated by

i.i.d. Gaussian random variables with distribution N (0, 1/L).
The waveforms are first precoded by matrix P ∈ C

Mt,R×Mt,R ,

and then transmitted over carrier fc periodically, with pulse

repetition interval TPRI . Suppose that there are one target

and K point clutters in the same range bin w.r.t. the radar

phase center. During each pulse, the target echoes and com-

munication interference received at the radar RX antennas are

demodulated to baseband and sampled every Tb seconds. The

discrete time signal model for sampling time index l ∈ N
+

L̃
is

expressed as

yR(l) = β0vr(θ0)v
T
t (θ0)Ps(l − l0) +G2x(l)e

jα2(l)

+
K
∑

k=1

βkvr(θk)v
T
t (θk)Ps(l − l0) +wR(l),

(1)

where L̃ = ⌊TPRI/Tb⌋ denotes the total number of samples

in one PRI; yR(l) and x(l) respectively denote the radar

received signal and communication waveform symbol at time

lTb; s(l) = [s1l, . . . , sMt,Rl]
T ; wR(l) is noise distributed as

CN (0, σ2
RI); l0 = ⌊τ0/Tb⌋ with τ0 , 2d0/vc, d0 being the

range of the target and vc being the speed of light; β0 and

βk, ∀k ∈ N
+
K , denote the complex radar cross sections for the

target and the k-th point clutter, respectively; the Swerling II

target model is assumed, i.e., the β0 varies from pulse to pulse

and has distribution CN (0, σ2
β0); and vr(θ) ∈ C

Mr,R is the

receive steering vector defined as

vr(θ) ,
[

ej2π〈d
r
1
,u(θ)〉/λc , . . . , e

j2π〈dr
Mr,R

,u(θ)〉/λc

]T

,

with dr
m , [xr

m yrm]T denoting the two-dimensional coordi-

nates of the m-th RX antenna, u(θ) , [cos(θ) sin(θ)]T , and

λc denoting the carrier wavelength. vt(θ) ∈ C
Mt,R is the

transmit steering vector and is respectively defined. The second

term on the right hand side of (1) denotes the interference due

to the communication transmission x(l) ∈ C
Mt,C . ejα2(l) is

introduced to denote the random phase offset resulted from the

random phase jitters of the oscillators at the communication

transmitter and the MIMO radar receiver Phase-Locked Loops

[13]. In the literature [19]–[21], phase jitters are modeled as

zero-mean Gaussian processes.

The MIMO communication system uses the same carrier

frequency fc. The baseband signal at the communication

receiver is sampled according to the symbol rate Ts, which

could be different that the radar waveform symbol duration Tb.

In this paper, we only consider the matched case, i.e., Ts = Tb;

the extension of the proposed methods to the mismatched

case is straightforward [13]. The discrete time communication

signal has the following form

yC(l) = Hx(l) +G1Ps(l)ejα1(l) +wC(l), l ∈ N
+

L̃
, (2)

where x(l) ∈ C
Mt,C denotes the transmit vector at the

communication transmitter at time index l; ejα1(l) denotes

the random phase offset between the radar TX carrier and

the communication RX reference carrier [13]; the additive

noise wC(l) has distribution CN (0, σ2
CI). Note that the radar

waveform s(l) equals zero when l > L, which means that the

communication system is interference free during this period.

The above model assumes that the radar transmission is the

only interference, while the target and clutter returns do not

reach the communication system.

III. SPECTRUM SHARING WITH CLUTTER MITIGATION

We first derive the communication rate and radar SINR in

terms of communication and radar waveforms.
For the communication system, the covariance of interfer-

ence plus noise is given by

RCinl =

{

G1ΦG
H
1 + σ2

CI l ∈ N
+

L

σ2
CI l ∈ N

+

L̃
\ N+

L

(3)

where Φ , PPH/L is positive semidefinite. For l ∈ N
+
L , the

instaneous information rate is unknown because the interfer-

ence plus noise is not necessarily Gaussian due to the random

phase offset α1(l). Instead, we are interested in a lower bound

of the rate, which is given by [22]

C(Rx,Φ) , log2
∣

∣I+R−1
CinlHRxH

H
∣

∣ ,

which is achieved when the codeword x(l), l ∈ N
+
L is

distributed as CN (0,Rx). The average communication rate

over L̃ symbols is as follows

Cavg(Rx,Φ) , ηC(Rx,Φ) + (1− η)C(Rx,0), (4)

where η , L/L̃ is called the radar duty cycle.



For the radar system, the covariance of the communica-

tion interference exerted at the radar RX antennas equals

E{G2x(l)e
jα2(l)e−jα2(l)xH(l)GH

2 } = G2RxG
H
2 . Suppose

that each of the clutter amplitude βk is an independent

complex Gaussian variable with zero mean and variance

σ2
βk. The above clutter model is widely considered in the

literature [23]–[25]. The clutter covariance matrix is given

as Rc =
∑K

k=1 CkΦCH
k with Ck = σβkvr(θk)v

T
t (θk).

Incorporating the additive noise and interference from both

clutter and the communication system, the radar SINR is given

as

SINR(Rx,Φ) = Tr
(

(RRin +Rc)
−1

D0ΦDH
0

)

, (5)

where RRin , G2RxG
H
2 +σ2

RI and D0 = σβ0vr(θ0)v
T
t (θ0).

Here we consider the scenario where the radar searches in

particular directions of interest given by set {θk} for targets

with unknown RCS variances and delays [23], [26]. The worst

possible target RCS variance is given by {σ2
0}, which is the

smallest target RCS variance that could be detected by the

radar. We assume that {σ2
βk} and {θk} are known. In practice,

these clutter parameters could be estimated when target is

absent [24].

The spectrum sharing problem when clutter is present can

be formulated as follows

(P1) max
Rx�0,Φ�0

SINR, s.t. Cavg(Rx,Φ) ≥ C, (6a)

L̃Tr (Rx) ≤ PC , LTr (Φ) ≤ PR. (6b)

Note that the objective in (P1) is not affine w.r.t. Φ because

the clutter covariance in SINR depends on Φ. One natural

solution is the sequential convex programming using the first

order Taylor expansion of the SINR. Solving the sequence of

approximated problems increases the computational complex-

ity. It is even worse when the sequential convex programming

is embedded in every alternating iterations w.r.t. Rx and Ψ.

In this paper, we propose a more efficient alternative where

we maximize a lower bound of the SINR. To tackle the non-

convexity in the objective function, we propose to maximize

a lower bound of the objective function

SINR ≥
σ2
β0M

2
r,RTr(ΦDt)

Tr(ΦC) + Tr(RxB) + σ2
RMr,R

, (7)

where Dt , v∗
t (θ0)v

T
t (θ0), C ,

∑K
k=1 C

H
k vr(θ0)v

H
r (θ0)Ck

and B , GH
2 vr(θ0)v

H
r (θ0)G2. The lower bound is derived

based on Cauchy-Schwarz inequality and is tight if the clutter

plus interference is spectrally white, i.e., (RRin + Rc) ∝ I.

The approximate problem is now given as

(P′
1) max

Rx�0,Φ�0

σ2
β0M

2
r,RTr(ΦDt)

Tr(ΦC) + Tr(RxB) + σ2
RMr,R

,

s.t. same constraints as(P1).

(8)

Alternate optimization is applied to solve (P′
1). The alter-

nating iterations w.r.t. Rx and Φ are discussed in the following

two subsections.

A. The Alternating Iteration w.r.t. Rx

With fixed Φ, the optimization w.r.t. Rx can be formulated

as the following equivalent convex problem

min
Rx�0

Tr(RxB) s.t. Cavg(Rx,Φ) ≥ C, L̃Tr (Rx) ≤ PC . (9)

Problem (9) can be solved using available SDP solvers [27].

B. The Alternating Iteration w.r.t. Φ

For the optimization of Φ with fixed Rx, the constraint in

(6a) is nonconvex w.r.t. Φ. The first order Taylor expansion

of Cavg(Rx,Φ) at Φ̄ is given as

Cavg(Rx,Φ) ≈ Cavg(Rx, Φ̄)− Tr
[

A(Φ− Φ̄)
]

,

where A is given in (10) on the top of next page.

The sequential convex programming technique is applied

to solve Φ by repeatedly solve the following approximate

optimization problem

max
Φ�0

Tr(ΦDt)

Tr(ΦC) + ρ
, s.t. Tr (ΦA) ≤ C̃/L,Tr (Φ) ≤ PR/L.

(11)

where C̃ = L[C(Rx, Φ̄)+Tr(Φ̄A)]+(L̃−L)C(Rx,0)−L̃C,

ρ = Tr(RxB) + σ2
RMr,R are real positive constants w.r.t. Φ,

and Φ̄ is updated as the solution of the previous repeated

problem. Problem (11) could be formulated as a semidefinite

programming problem (SDP) via Charnes-Cooper Transfor-

mation [24], [28]. However, in each alternating iteration w.r.t.

Φ, it is required to solve several iterations of SDP due to the

sequential convex programming, which could be computation-

al demanding if Φ has large dimensions. In the following, we

will show that (11) always has rank one solution, and thus it

could be further solved using more efficient second order conic

programming (SOCP). To do so, we introduce the following

SDP problem

min
Φ�0

Tr (Φ) s.t. Tr (ΦA) ≤ C̃/L,
Tr(ΦDt)

Tr(ΦC) + ρ
≥ γ, (12)

where γ is a real positive constant. The following proposition

relates the optimal solutions of problems (11) and (12).

Proposition 1. If γ in (12) is chosen to be the maximum

achievable SINR of (11), denoted as SINRmax, the optimal Φ

of (12) is also optimal for (11).

Proof: Denote Φ∗
1 and Φ∗

2 the optimal solutions of (11)

and (12), respectively. It is clear that Φ∗
1 is feasible point of

(12). This means that Tr(Φ∗
2) ≤ Tr(Φ∗

1) ≤ PR/L. Therefore,

Φ∗
2 is a feasible point of (11). It holds that

SINRmax ≡
Tr(Φ∗

1Dt)

Tr(Φ∗
1C) + ρ

≥
Tr(Φ∗

2Dt)

Tr(Φ∗
2C) + ρ

≥ SINRmax.

It is only possible when all the equalities hold. In other words,

Φ∗
2 is optimal for (11). The claim is proved.

Based on the above proposition, the optimal solution of (11)

can be obtained by solving (12) using a bisection search for γ.

Given an interval [l, u] which contains SINRmax, we start from

solving (12) with γ = l+u
2 . If the optimal solution of (12) is

feasible for (11), this means that SINRmax is larger than l+u
2 ,

and the interval is updated by its upper half; otherwise, the

interval is updated by its lower half. The above procedure is

repeated until the interval is sufficient small. The remaining

issue is to find an algorithm that solves (12) more efficiently

than SDP does.

In order to characterize the optimal solution of (12), we

need the following key lemma:

Lemma 1. Matrix A defined in (10) is positive semidefinite.



A , −

(

∂Cavg(Rx,Φ)

∂ℜ(Φ)

)T

Φ=Φ̄

= GH
1 [(G1ΦGH

1 + σ2
CI)

−1 − (G1ΦGH
1 + σ2

CI+HRxH
H)−1]G1

∣

∣

Φ=Φ̄
. (10)

Proof: For simplicity of notation, we denote that X ,

G1ΦGH
1 + σ2

CI ≻ 0 and Y , HRxH
H � 0. It is easy to

see that A is Hermitian because both X−1 and (X+Y)−1

are Hermitian. It is sufficient to show that M , X−1 −
(X+Y)−1 is positive semidefinite. We have that

X−1 − (X+Y)−1 = X−1Y(X+Y)−1,

which could be shown by right multiplying (X+Y) on both

sides of the equality. Since X, Y and M are Hermitian, we

have

M = X−1Y(X+Y)−1 = (X+Y)−1YX−1.

Since (X+Y)−1 is invertible, there exists a unique positive

definite matrix V, such that (X+Y)−1 = V2. Simple

algebra manipulation shows that

V−1MV−1 = (V−1X−1V−1)(VYV)

= (VYV)(V−1X−1V−1),

i.e., V−1MV−1 is a product of two commutable positive

semidefinite matrices V−1X−1V−1 and VYV. Therefore,

V−1MV−1 and thus M is positive semidefinite.

Based on Lemma 1, we prove the following result by

following the approach in [28]:

Proposition 2. Suppose that (12) is feasible. Then, the optimal

solution of (12) must be rank one and unique. Moreover, (11)

always has rank one solution.

Proof: Problem (12) is an SDP, whose Karush-Kuhn-

Tucker (KKT) conditions are given as

Ψ+ λ2Dt = I+ λ1A+ λ2γC (13a)

ΨΦ = 0 (13b)

Ψ � 0,Φ � 0, λ1 ≥ 0, λ2 ≥ 0 (13c)

Tr(ΦDt) ≥ γTr(ΦC) + γρ (13d)

where Ψ � 0, λ1 ≥ 0, λ2 ≥ 0 are dual variables. From (13a),

we have

rank(Ψ) + rank(λ2Dt) ≥ rank(I+ λ1A+ λ2γC).

Recall that rank(Dt) = 1. Since A and C are PSD, the matrix

on right hand side of (13a) has full rank. Therefore, rank(Ψ) is

not smaller than Mt,R−1. From (13b) and (13d) we conclude

that the optimal Φ must be a rank one matrix.

The uniqueness of optimal solution could be proved via

contradiction. The second claim on the solution of (11) follows

from Proposition 1.

Proposition 2 implies that when there is only one target, the

transmit beamforming is the optimal radar precoding strategy

for the spectrum sharing between the MIMO radar and the

communication systems along with clutter mitigation for radar,

as formulated in (P′
1). Based on Proposition 2, we denote that

Φ = uuH , where u is a vector of dimension Mt,R. Problem

(12) can be reformulated as

min
u

‖u‖2 s.t. ‖A1/2u‖2 ≤ C̃/L,

γuHCu+ γρ ≤
(

uHv∗
t (θ0)

)2
.

(14)

Note that if u is a solution of (14), so is ejwu for any real
w. Without loss of generality, we restrict uHv∗

t (θ0) is real
and nonnegative. Problem (14) is equivalent to the following
SOCP

min
u,t

t s.t. ‖u‖2 ≤ t,
∥

∥

∥
A

1/2
u

∥

∥

∥

2

≤

√

C̃/L,
∥

∥

∥

∥

∥

[

γC
γρ

]1/2
[

u

1

]∥

∥

∥

∥

∥

2

≤ u
H
v
∗

t (θ0).
(15)

The proposed efficient spectrum sharing algorithm in pres-

ence of clutter using a lower bound of the radar SINR is

outlined in Algorithm 1.

Algorithm 1 The proposed algorithm for spectrum sharing

with clutter mitigation (P′
1).

1: Input: D0,Cn,H,G1,G2, PC/R, C, σ
2
C/R, δ1

2: Initialization: Φ = PR

LMt,R
I, Rx = PC

L̃Mt,C
I;

3: repeat

4: Update Rx by solving (9) with fixed Φ;

5: Update Φ by solving a sequence of approximated

problem (11), which is in turn achieved by bisection

search and repeatedly solving (15) using SOCP solvers;

6: until |SINRn − SINRn−1| < δ1
7: Output: Rx,P = u

IV. SIMULATION RESULTS

In this section, we provide two simulation examples to

quantify the performance of the proposed spectrum sharing

method with clutter mitigation. We set the number of samples

per PRI to L̃ = 32, the number of radar waveform symbols to

L = 8, the noise variance to σ2
C = σ2

R = 0.01, and the number

of antennas to Mt,R = Mr,R = 16,Mt,C = 8,Mr,C = 4.

The MIMO radar system consists of collocated TX and RX

antennas forming half-wavelength uniform linear arrays. The

radar waveforms are chosen from the rows of a random

orthonormal matrix [12]. There are one stationary targets with

RCS variance σ2
β0 = 5 × 10−5 and eight point clutters.

All clutter RCS variances are set to be identical and are

denoted by σ2
β , which is decided by the prescribed clutter to

noise ratio (CNR) 10 log σ2
β/σ

2
R. The target angle θ0 w.r.t.

the array is randomly generated; clutter scatters are with

angles in [θ0 − 20◦, θ0 − 10◦] and [θ0 + 10◦, θ0 + 20◦].
For the communication capacity and power constraints, we

take C = 24 bits/symbol and PC = L̃Mt,C (the power

is normalized by the power of the radar waveform). The

interference channels G1 and G2 are generated with entries

which are independent and distributed as CN (0, 0.1). The



channel H has independent entries, distributed as CN (0, 1).
The proposed spectrum sharing method with clutter mitigation

jointly designs the communication covariance matrix and the

radar precoder according to the algorithm presented in Section

III. For comparison, we also implement the method based

on the Charnes-Cooper transformation of (11) and SDP. The

aforementioned spectrum sharing algorithms are respectively

labeled by “precoding with clutter mitigation (SOCP)” and

“precoding with clutter mitigation (SDP)” in the figures. We

also implement the spectrum sharing method without the con-

sideration of clutter mitigation, labeled by “precoding without

clutter mitigation”, and method based on uniform precoding,

i.e., P =
√

LPR/Mt,RI.

Radar TX Power Budget PR ×106
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Fig. 2. SINR performance under different values of radar TX power.
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Fig. 3. SINR performance under different clutter to noise ratios (CNR).

Fig. 2 shows the SINR results for different values of

the radar transmit power budget PR. The CNR is fixed as

20 dB. The radar power budget per antenna ranges from

100 to 20, 000 times of the communication power budget

per antenna. Fig. 3 shows the SINR results under different

clutter to noise ratios. The radar power budget is fixed as

PR = 2.56 × 105. We can observe that the proposed method

achieves the highest SINR while the uniform precoding based

method achieves the lowest SINR. The method “precoding

without clutter mitigation” improves the SINR over uniform

precoding because it focuses more power on the target. Our

proposed method achieves higher SINR than the method

without clutter mitigation because our method can effectively

reduce the power transmitted on the clutter. Note that the

performance of the SDP based method degrades greatly as the

CNR increases, even worse than the spectrum sharing method

without considering clutter mitigation. This indicates that the

SDP based method is very sensitive to CNR. A rigorous

treatment on this phenomenon will be considered in the future

work.

Comparing with the spectrum sharing method using SDP

based precoding design, our proposed SOCP based precoding

design is more tractable and computationally efficient. From

Fig. 2 and Fig. 3, we can see that the proposed method

outperforms the SDP based method when CNR is larger than

10 dB. The CPU time required by the SDP method increase

dramatically with Mt,R, while the proposed SOCP based

method increase mildly with Mt,R.

V. CONCLUSION

We have proposed an efficient spectrum sharing method for

a MIMO radar and a communication system operating in a

scenario with clutter. The radar and communication system

signals were optimally designed by minimizing a lower bound

for the SINR at the radar receive antennas. We have shown

that the radar precoder always has a rank one solution. Based

on this key observation, the alternating iteration of the radar

precoder has been solved by a sequence of SOCP problems,

which are more efficient and tractable than applying SDP

directly. Simulation results have shown that the proposed

spectrum sharing method can effectively increase the radar

SINR for various scenarios with clutter.
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