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System Model 

• We consider sparse sensing-based distributed MIMO 
radars, which exploit the sparsity of the targets in the 
space to achieve good target estimation performance 
of MIMO radars but with fewer measurements. 

• In the model of sparse sensing-based distributed 
MIMO radars, the sensing matrix is block-diagonal and 
the sparse vector to be recovered consists of equal-
length sub-vectors that have the same sparsity profile.  

• This paper develops the theoretical requirements and 
performance guarantees for the application of block 
sparse recovery technique in this context.  

• The results confirm that exploiting the block sparsity 
of the target vector can reduce the number of 
measurements needed for target estimation, or can 
result in improved target estimation for the same 
number of measurements. 
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Observations on the Gram of  

The Gram of   is denoted by 𝐆 =diag(𝐆11 ,…,𝐆𝑀𝑡𝑀𝑟
) 

where 𝐆𝑖𝑗 =  𝑖𝑗
𝐻
 𝑖𝑗 . The (𝑛,𝑚)-th entry of 𝐆𝑖𝑗 equals 

𝐆𝑖𝑗 𝑛,𝑚 =
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𝑒
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To bound the entries of 𝐆𝑖𝑗 , we have three cases 

• Case (i): 𝑛 = 𝑚, i.e., diagonal entries 𝐆𝑖𝑗(𝑛), 

Pr 𝐆𝑖𝑗 𝑛 − 1 > 𝑡 ≤ 2 exp(−𝐿𝑡2/16) 

• Case (ii): 𝜏𝑖𝑗
𝑛 ≠ 𝜏𝑖𝑗

𝑚, i.e., off-diagonal entries, 

Pr 𝐆𝑖𝑗 𝑛,𝑚 > 𝑡 ≤ 4 exp −
𝐿 − 1 𝑡2

8 + 4𝑡
 

• Case (iii): 𝜏𝑖𝑗
𝑛 = 𝜏𝑖𝑗

𝑚, 𝑓𝑖𝑗
𝑛 ≠ 𝑓𝑖𝑗

𝑚, we have 

𝐆𝑖𝑗 𝑛,𝑚 =
𝐱𝑖,𝜏𝑖𝑗

𝑛
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𝑚 − 𝑓𝑖𝑗

𝑛 𝑇𝑃)

sin⁡(𝜋 𝑓𝑖𝑗
𝑚 − 𝑓𝑖𝑗

𝑛 𝑇)
 

Denoting the second multiplier as 𝜙𝑖𝑗
𝑚𝑛, 𝐆𝑖𝑗 𝑛,𝑚  can be 

viewed as a squared norm of a Gaussian vector. Applying 
Lemma 5 in [2], we have  

 Pr 𝐆𝑖𝑗 𝑛,𝑚 > 𝑡 ≤ exp −
𝐿

16
𝑡/𝛾𝑖𝑗 − 1

2
 

 where 𝛾𝑖𝑗 ≡ sup
𝑚,𝑛∈𝑆2

|𝜙𝑖𝑗
𝑚𝑛/𝑃|,  

           𝑆2 ≡ {(𝑚, 𝑛)|𝑚, 𝑛 ≤ 𝑁, 𝜏𝑖𝑗
𝑛 = 𝜏𝑖𝑗

𝑚, 𝑓𝑖𝑗
𝑛 ≠ 𝑓𝑖𝑗

𝑚}. 

Measurement Matrix Satisfying -RIP 

Theorem 1: For any 𝛿𝐾 ∈ 0.1 , there exist 𝑐1 and 𝑐2 such 

that   satisfies 1-RIP 𝐾, 𝛿𝐾  with probability exceeding 
1 − exp(−𝑐1(𝐿 − 1)/𝐾2) whenever  

𝐿 ≥ 𝑐2𝐾
2log 𝑁𝑀𝑡𝑀𝑟 + 1,                (3)   

𝛾𝑖𝑗 ≤
𝛿𝐾

2𝐾 + 𝛿𝐾
, ∀𝑖 ∈ 𝑀𝑡

+ , 𝑗 ∈ 𝑀𝑟

+ ⁡⁡⁡(4) 

Sketch of proof: Under condition (4), the bounds on the 
off-diagonal entries from case (ii) and (iii) are unified by 

Pr 𝐆𝑖𝑗 𝑛,𝑚 > 𝑡 ≤ 4 exp −
𝐿−1 𝑡2

16
. 

Applying the Gergosin’s Disc Theorem proves the claims. 
Remark: Exploiting the structures in both  and 𝐬 allows 
for reduction of the number of samples, 𝐿, needed for 
target estimation. From [2], a full Toeplitz matrix satisfies 
the RIP if 𝐿 is on the order of (𝐾2𝑀𝑡𝑀𝑟log⁡(𝑁𝑀𝑡𝑀𝑟)), 
which is 𝑀𝑡𝑀𝑟  times larger than the bound in (3). 

 Sparse Signal Recovery 
• By directly applying the L-OPT in [1], we have 

min
𝐬

 s 𝑛 2

𝑁

𝑛=1

⁡⁡𝑠. 𝑡. ⁡ 𝐳 − 𝑀()𝑣(s) 2 ≤ 𝜖⁡⁡⁡⁡⁡⁡(2) 

where 
• 𝑣 s = s 1 ; … ; s 𝑁 ,𝑏𝑙𝑘

𝐾 ≡ 𝑣 𝐬 𝐬0
𝐾 ;   

• 𝑀(): permutation of columns of .  
Definition 1: Matrix  satisfies the RIP over ⁡with 𝛿𝐾 , 
or equivalently the -𝑅𝐼𝑃(𝐾, 𝛿𝐾),  if for every 𝐱 ∊  it 
holds that (1 − 𝛿𝐾 𝐱 2

2 ≤ 𝐱 2
2 ≤ (1 + 𝛿𝐾 𝐱 2

2)). 

Result 1: Consider  = /( 𝐿𝑃𝜎0). If 𝑀( ) satisfies 

the 𝑏𝑙𝑘-RIP(2𝐾, 𝛿2𝐾) with 𝛿2𝐾 ≤ 2 − 1, then the L-OPT 
method in (2) can recover 𝐬 with 

𝐬 − 𝐬 2 ≤ 4 1 + 𝛿2𝐾/ 1 − 1 + 2 𝛿2𝐾 𝜖. 

• To prove the 𝑏𝑙𝑘-RIP of  , we utilize the fact that 
1 -RIP of  → 0−RIP of  ↔⁡𝑏𝑙𝑘 -RIP of 𝑀( )⁡  
where 0

𝐾 ⊂ 1
𝐾  and 1

𝐾 is defined as 
1
𝐾 ≡ 𝐲 ∈ ℂ𝑁𝑀𝑡𝑀𝑟 ⁡ supp 𝐲1 = ⋯ = supp 𝐲𝑀𝑡𝑀𝑟

≤ 𝐾}. 

The location-speed space is discretized by  with 𝑁 grid 
points. For the (𝑖𝑗)-th TX/RX pair, the signal vector at 𝑗-th 
RX from 𝑃 pulses due to the transmission of 𝑖-th TX 

         𝐳𝑖𝑗 = 𝑖𝑗 𝐬𝑖𝑗 + 𝐧𝑖𝑗 , ⁡⁡ ∀𝑖 ∈ 𝑀𝑡

+ , 𝑗 ∈ 𝑀𝑟

+  

where 𝐬𝑖𝑗 = [𝑠𝑖𝑗
1, … , 𝑠𝑖𝑗

𝑁]𝑇 with 𝑠𝑖𝑗
𝑛  being non-zero only 

if there is a target at the 𝑛-th grid point; and 

𝑖𝑗 =

𝐱𝑖,𝜏𝑖𝑗
1 𝑒𝑗2𝜋𝑓𝑖𝑗

1𝑇 ⋯ 𝐱𝑖,𝜏𝑖𝑗
𝑁𝑒𝑗2𝜋𝑓𝑖𝑗

𝑁𝑇

⋮ ⋱ ⋮
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1 𝑒𝑗2𝜋𝑓𝑖𝑗

1𝑃𝑇 ⋯ 𝐱𝑖,𝜏𝑖𝑗
𝑁𝑒𝑗2𝜋𝑓𝑖𝑗
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(𝐿𝑃×𝑁)

 

where 𝐱𝑖,𝜏𝑖𝑗
𝑛  is a vector contains 𝐿 samples of the 𝑖-th 

waveform shifted by 𝜏𝑖𝑗
𝑛 . 𝑛𝑖𝑗  represents noise. 𝜏𝑖𝑗

𝑛  and 𝑓𝑖𝑗
𝑛 

denote the delay time and Doppler frequency. The 
transmitted waveforms are Gaussian signals with 
variance 𝜎0

2. 
Stacking the received samples into a vector 𝐳, we get 

𝐳 = 𝐳11
𝑇 , … , 𝐳𝑀𝑡𝑀𝑟

𝑇 𝑇
= s+n            (1) 

where 𝐬 = 𝐬11
𝑇 , … , 𝐬𝑀𝑡𝑀𝑟

𝑇 𝑇
, ⁡𝐧 = 𝐧11

𝑇 , … , 𝐧𝑀𝑡𝑀𝑟

𝑇 𝑇
and 

 = diag(11, … ,𝑀𝑡𝑀𝑟
). 

The vector 𝐬 is a concatenation of 𝑀𝑡𝑀𝑟  sub-vectors that 
share the same sparsity profile, and have exactly 𝐾 
nonzero entries each. 𝐬 lies in 0

𝐾 defined by 
0
𝐾 ≡ {𝐲 ∈ ℂ𝑁𝑀𝑡𝑀𝑟|supp 𝐲1 = ⋯ = supp 𝐲𝑀𝑡𝑀𝑟

, supp 𝐲𝑗
≤ 𝐾} 

Numerical Results 

We consider a MIMO radar system with 𝑀𝑡 = 2⁡TX and 
𝑀𝑟 = 2 RX antennas, distributed uniformly on a circle of 
radius of 6𝑘𝑚 and 3𝑘𝑚, respectively. The probing space is 
discretized on a 20⁡ × ⁡4 grid, with grid spacing equal to 10⁡𝑚. 
The velocity space is 𝑉𝑥 ∈ [100, 130]𝑚/𝑠, 𝑉𝑦 = 100𝑚/𝑠⁡and is 

uniformly discretized on a 4 × 1 grid. AWGN with variance 𝜎𝑛
2 

is considered, and the SNR is defined as 10⁡log10(𝜎0
2/𝜎𝑛

2). 

 

Fig. 1. Left: Results on the choice of the number of pulses, 𝑃; 
Right: success recovery rate for different number of targets, 
𝐾, with 𝐿 = 6, 𝑃 = 3. 


