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Abstract—Sparse sensing-based distributed MIMO radars ex-
ploit the sparsity of the targets in the discretized target space
to achieve the good target estimation performance of MIMO
radars but with fewer measurements. Based on sparse sensing,
the problem of target estimation is formulated as a sparse signal
recovery problem, where the signal to be recovered is block
sparse, or equivalently, the sensing matrix is block-diagonal and
the signal to be recovered consists of equal size blocks that have
the same sparsity profile. This paper develops the theoretical
requirements and performance guarantees for the application
of sparse recovery techniques to this problem. The obtained
theoretical results confirm that exploiting the block sparsity of the
target in the target space can reduce the number of measurements
needed for target estimation, or can result in improved target
estimation for the same number of samples.

Index Terms—Distributed MIMO radar, sparse sensing, re-
stricted isometry property, block diagonal matrices.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radars [1], [2], [3]
have received considerable attention in recent years due to
their improved performance over traditional phase arrays.
Distributed MIMO radars are a special class of MIMO radars
in which the antennas are widely separated. Due to the spatial
diversity, introduced by the multiple independents paths be-
tween the targets and the transmit/receive antennas, distributed
MIMO radars enjoy improved target estimation performance
as compared to phased arrays. By exploiting the sparsity of
targets in the target space, sparse sensing [4], [5] has been
introduced in distributed MIMO radars [6], [7], allowing them
to maintain their good target estimation performance while
involving fewer data. Based on sparse sensing, the problem
of target estimation is formulated as a sparse signal recovery
problem, where the signal to be recovered is block sparse. The
block sparsity arises in [6], [7] by grouping together in the
measurement matrix transmit/receive antenna pair measure-
ments corresponding to the same grid point. Exploiting block
sparsity results in improved target estimation and reduction
of the number of measurements needed. However, in [6], [7]
the performance of the recovery algorithms was addressed via
simulations only.

This paper considers the aforementioned problem, and by
permuting the columns of the measurement matrix we re-
formulate the block-sparse signal recovery problem into a
problem in which the measurement matrix Ψ is block diagonal
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(BD) and the sparse signal, s, contains equal-sized blocks that
have the same sparsity profile. This reformulation enables us to
perform restricted isometry property (RIP)-based performance
analysis. Target estimation, or equivalently, the recovery of
s can be achieved by the mixed `2/`1-optimization program
(L-OPT) of [8]. The effectiveness of L-OPT is guaranteed
if the RIP of Ψ holds with respect to sparse signals with
the aforementioned structure. We show that if the number of
measurements at each receiver scales quadratically with the
number of the targets and logarithmically with the number of
grid points in the location-speed space, then Ψ satisfies the
required RIP.

The derived theoretical results confirm that the BD structure
in Ψ and the sparsity structure in s reduce the number of
measurements needed for target estimation in sparse modeling
based distributed MIMO radars. In addition, the RIP-based
analysis in this paper provides a uniform recovery guarantee,
which means that once Ψ satisfies the RIP, target estimation
can be achieved with high probability even in the worst case.

Relations to prior work: Existing theoretical work on sparse
modeling based MIMO radar considered collocated antennas
[9], [10]. These works, however, do not easily extend to
the distributed MIMO radar scenario. While the RIP analysis
technique for measurement matrix in this paper is related to
that for a Toeplitz matrix, presented in [11], our analysis deals
with a block-diagonal measurement matrix with additional
complex exponential factors introduced by the moving targets.

The paper is organized as follows. In Section II, we derive
the sparse model of a MIMO radar system with widely
separated antennas. In Section III, the performance of L-OPT
recovery algorithm is provided assuming that the measurement
matrix satisfies the A-RIP, which is established in Section IV.
Simulation results are given in Section V.

II. SIGNAL MODEL

We consider a MIMO radar system with Mt transmit nodes
(TX) and Mr receive nodes (RX), which are widely separated.
Let (xti, y

t
i) and (xri , y

r
i ) denote the locations of the i-th trans-

mit and receive antenna in cartesian coordinates, respectively.
The i-th TX antenna transmits repeated pulses with pulse
repetition interval T . Each pulse contains the continuous-time
waveform xi(t)e

j2πfit, where fi is the carrier frequency. Let
us assume that there are K moving targets present in the space.
For simplicity, we consider a clutter-free environment.



The location-speed space is discretized by Θ ≡ {(xn, yn,
vnx , v

n
y ), n = 1, . . . , N}, N , Nx ×Ny ×Nvx ×Nvy , and it

is assumed that the targets fall on grid points.
Suppose that the j-th receive antenna obtains L Ts-spaced

samples from each pulse transmitted by antenna i. On stacking
the samples from P pulses into vector zij it holds [7]:

zij = Ψijsij + nij (1)

where sij =
[
s1ij , . . . , s

N
ij

]T
, with snij being non-zero only

if there is a target at the n-th grid point (here n refers to a
particular ordering of grid points of the 4-dimensional space
into a vector of length N ); nij represents noise; and

Ψij =


x
i,τ1
ij
e
j2πf1ijT ··· x

i,τN
ij
e
j2πfNij T

...
. . .

...
x
i,τ1
ij
e
j2πf1ijPT ··· x

i,τN
ij
e
j2πfNij PT


(LP )×N

(2)

where xi,τnij is a vector that contains L samples of the i-th
waveform appropriately shifted by τnij . τ

n
ij and fnij respectively

denote the propagation time and Doppler frequency associated
with the n-th grid and the TX/RX antenna pair (i, j).

fnij =

〈
(vnx , v

n
y ),dtin

〉
λi‖dtin‖2

+

〈
(vnx , v

n
y ),drin

〉
λi‖drin‖2

(3)

where d
t/r
in , ((x

t/r
i , y

t/r
i )−(xn, yn)) denotes the vector from

the n-th grid to the i-th TX/RX antenna, and λi is the carrier
wavelength of the i-th transmitter.

On stacking the received samples from all TX/TR antenna
pairs into a column vector z of length LPMtMr, we get

z =
[
(z11)T , . . . , (zMtMr

)T
]T

= Ψs + n (4)

where s =
[
(s11)T , . . . , (sMtMr )

T
]T
, n = [(n11)T , . . . ,

(nMtMr )
T ]T , and Ψ = diag(Ψ11, . . . ,ΨMtMr ).

Note that each vector sij contains zero entries except the
entries corresponding to grid points occupied by targets. Thus,
the vector s is a concatenation of MtMr subvectors that share
the same sparsity profile, and have exactly K nonzero entries
each. We can say that s lies in AK0 defined by

AK0 , {y ∈RNMtMr : supp(y1) = · · · = supp(yMtMr ),

|supp(yj)| ≤ K, j = 1, . . . ,MtMr}
(5)

where yj ∈ RN , j = 1, . . . ,MtMr are uniformly partitioned
blocks of y, supp(·) and | · | denote the index set of nonzero
entries of a vector, and the cardinality of a set, respectively.
In the next section, the target estimation, or equivalently the
recovery of vector s, is achieved by adapting a block sparse
recovery method in compressive sensing literature.

III. THE SPARSE RECOVERY ALGORITHM

To apply the mixed `2/`1-optimization program (L-OPT) of
[8] for the sparse recovery, we can permute the columns of Ψ

and correspondingly the entries of s to generate block sparsity
in the target vector. Specifically, s is recovered by solving

min

N∑
n=1

‖s[In]‖2 s.t. ‖z− PM (Ψ)Pv(s)‖2 ≤ ε. (6)

where PM is the column permutation matrix applied on Φ
and Pv the corresponding permutation operator applied on s;
{In}Nn=1 are the sets with cardinality MtMr containing the
indices of the n-th entries from all blocks sij ; ε is related to
the norm of vector n. In the above, Pv(s) = [s[I1, . . . , IN ]]T

is block-sparse. In the following we will denote by AKblk the
set of block-sparse vectors resulting from permutations of s ∈
AK0 , i.e., AKblk , {Pv(s) | s ∈ AK0 }.

In [8], the authors provided the recovery performance
guarantee by (6) given the condition that PM (Ψ) satisfies the
Ablk-RIP which is defined as follows.

Definition 1 ([12]): For set A, Ψ is said to satisfy the A-
restricted isometry property with constant δ ∈ (0, 1), in short,
A-RIP(K, δ), if δ is the smallest value such that (1−δ)‖s‖22 ≤
‖Ψs‖22 ≤ (1 + δ)‖s‖22 holds for all s ∈ A.

Note that by setting t = 1 in Lemma 2 in the Appendix, the
norm of vector n is upper bounded by ε , 2

√
LPMtMrσ2

n

with probability at least (1 − p1) where p1 = e−c0LPMtMr .
Substituting the expression of ε into the result of [8, Theorem
2] gives the following performance guarantees.

Performance of sparse sensing-based MIMO radars: Sup-
pose that the transmitted waveforms are bandlimited Gaussian
signals with variance σ2

0 . Ψ̃ , Ψ/
√
LPσ2

0 is with unit-
norm columns. If PM (Ψ̃) satisfies the Ablk-RIP(2K, δ2K)
with δ2K ≤

√
2−1, then the L-OPT method in (6) can recover

s with

‖ŝ− s‖`2 ≤
8
√
MtMr

√
1 + δ2K

1− (1 +
√

2)δ2K

σn
σ0

(7)

and with probability at least (1− p1).
The above result assumes that PM (Ψ̃) satisfies Ablk-RIP.

However, PM (Ψ̃) has a complicated structure, which makes
the RIP analysis difficult. In [13, Proposition 1], we have
shown that the Ablk-RIP of PM (Ψ̃) is equivalent to the
A0-RIP of Ψ̃. However, still, establishing the A0-RIP of Ψ̃
directly is difficult. However, we can follow an indirect way
to establish the A0-RIP of Ψ̃. Let us define

AK1 , {y ∈RNMtMr : |supp(y1)| = · · · = |supp(yMtMr
)|,

|supp(yj)| ≤ K, j = 1, . . . ,MtMr}.
(8)

One can see that AK0 ⊂ AK1 . If we can show that Ψ̃ satisfies
the A1-RIP(2K, δ2K), then Ψ̃ will satisfy A0-RIP(2K, δ02K)
with δ02K smaller than δ2K . That is to say that the L-OPT
achieves the performance in (7) if Ψ̃ satisfies the A1-RIP. We
claim that Ψ̃ satisfies the A1-RIP under certain conditions as
shown in the next section.

IV. THE A1-RIP OF THE MEASUREMENT MATRIX

Ahead of the RIP analysis, we provide some observations
on the Gram of matrix Ψ̃. Let us first state one lemma which
will be used later.



Lemma 1: Let {xi} and {yi}, i = 1, . . . , Q be sequences
of identical distributed zero-mean Gaussian variables with
variance σ2. All variables are independent except that the last
I (I ∈ [1, Q)) variables of {xi} are the first I variables of
{yi}, i.e., xi+Q−I = yi for any i ∈ [1, I]. Then

Pr

(∣∣∣∣∣
Q∑
i=1

xiyi

∣∣∣∣∣ ≥ t
)
≤ 4 exp

(
− (Q− 1)t2

8Qσ2(Qσ2 + t/2)

)
.

We know that {xiyi}Qi=1 are not mutually independent. Lemma
1 can be proved by a splitting trick, similar to [11].

A. Observations on The Gram of Ψ̃

The Gram of Ψ̃, denoted here by G, is also block-diagonal,
i.e., G = diag(G11, . . . ,GMtMr

) where Gij = Ψ̃H
ij Ψ̃ij and

Ψ̃ij , Ψij/
√
LPσ2

0 .
Consider the (n,m)th entry in Gij . It holds that

Gij(n,m) =
xTi,τnijxi,τ

m
ij

LPσ2
0

P∑
p=1

ej2π(f
m
ij−f

n
ij)(pT )

=
xTi,τnijxi,τ

m
ij

LPσ2
0

sin
(
π(fmij − fnij)TP

)
sin
(
π(fmij − fnij)T

) ej2π(fmij−fnij)PT
(9)

which is the inner product of the columns in Ψ̃ij correspond-
ing to the nth and mth grid points. The following three cases
are analyzed:

Case (i) For n = m, i.e., the diagonal entries, Gij(n) =
1
Lσ2

0
xTi,τnijxi,τ

n
ij

which is the sum of squares of i.i.d Gaussian
variables with E{Gij(n)} = 1. It holds that (see also [11])

Pr(|Gij(n)− 1| > t) ≤ 2 exp
(
−Lt

2

16

)
. (10)

Case(ii) the nth and mth grid points have different coordi-
nates (τnij 6= τmij ). From (9), it holds that E{Gij(n,m)} = 0
and

|Gij(n,m)| ≤ ρij
Lσ2

0

|xTi,τnijxi,τmij | (11)

where ρij is the maximum value that
∣∣∣∣ 1P sin

(
π(fmij−f

n
ij)TP

)
sin
(
π(fmij−f

n
ij)T

) ∣∣∣∣ can

achieve (ρij ∈ [0, 1]). We consider the quantity |Gij(n,m)| =
|Gij(n,m) − E{Gij(n,m)}|. In order to give a bound on
|Gij(n,m)|, it suffices to consider the worst case, because

Pr
(
|Gij(n,m)| > t

)
≤ Pr

(
ρij
Lσ2

0

|xTi,τnijxi,τmij | > t

)
≤ Pr

(
1

Lσ2
0

|xTi,τnijxi,τmij | > t

)
.

(12)

Now, we need to provide the bound on the inner product of
xi,τnij and xi,τmij . Note that xi,τnij and xi,τmij are both truncated
out from the i-th waveform and may share some common
entries. The general bound of [11, Lemma 5] referring to
two distinct i.i.d random vectors cannot be applied directly.
Applying Lemma 1 for each off-diagonal entry Gij(n,m),
we have

Pr
(
|Gij(n,m)| > t

)
≤ 4 exp

(
− (L− 1)t2

8(1 + t/2)

)
. (13)

Case(iii) the nth and mth grid points share the same
coordinates (τnij = τmij ) but have different speeds (fnij 6= fmij ).

Consider the absolute value

|Gij(n,m)| =
xTi,τnijxi,τ

n
ij

LPσ2
0

∣∣∣∣ sin
(
π(fmij − fnij)TP

)
sin
(
π(fmij − fnij)T

) ∣∣∣∣. (14)

If we denote the second multiplier as Cmnij , |Gij(n,m)| can be

viewed as the squared norm of
√

Cmnij
LPσ2 xi,τnij with i.i.d zero-

mean Gaussian entries with variance σ2
1 =

Cmnij
LP . Applying the

unilateral bound in Lemma 5 in [11], we have

Pr (|Gij(n,m)| > t) ≤ exp

(
− 1

L

(
t− Lσ2

1

4σ2
1

)2
)

= exp

(
− L

16

(
Pt

Cnmij
− 1

)2
)
≤ exp

(
− L

16

(
t

γij
− 1

)2
)
(15)

where
γij = sup

(m,n)∈S2

∣∣Cmnij /P
∣∣,

S2 , {(m,n)|m,n ≤ N, τnij = τmij , f
n
ij 6= fmij }.

(16)

B. A1-RIP of the Normalized Measurement Matrix

Equipped with the above observations, we are ready to prove
the following theorem regarding the A1-RIP of Ψ̃.

Theorem 1: Let Ψ̃ be the normalized measurement matrix
with MtMr ≥ 3, i.e., Ψ̃ = Ψ/

√
LPσ2

0 . Then, for any δK ∈
(0, 1) there exist constants c1 and c2 depending only on δK ,
such that whenever

L ≥ c2K2 log(NMtMr) + 1, (17)

and γij ≤ δK/(2K + δK) for all i ∈ [1,Mt], j ∈ [1,Mr]
defined in (16), Ψ̃ satisfies A1-RIP(K, δK) with probability
exceeding 1−exp(−c1(L−1)/K2). Specifically, for any c1 ≤
δ2K/64, it suffices to choose c2 ≥ 128/(δ2K − 64c1).

Proof: Here we only focuss on the bounds for the off-
diagonal entries in the Gram of Ψ̃, G = Ψ̃HΨ̃. For diagonal
entries, i.e., n = m as in case (i), the union bound can be
easily obtained based on (10).

The off-diagonal entries may be from either case (ii) or
case (iii). In order to arrive at a uniform union bound, we
need to unify the bounds in (13) and (15) for these two cases.
Inequality (13) for case (ii) can be relaxed as

Pr (|Gij(n,m)| > t) ≤ 4 exp

(
−L− 1

16
t2
)
. (18)

With 1/γij = 1/t+ ∆, (15) for case (iii) becomes

Pr (|Gij(n,m)| > t) ≤ exp

(
− L

16
(1 + ∆t− 1)2

)
≤ exp

(
− L

16
∆2t2

)
≤ 4 exp

(
−L− 1

16
∆2t2

)
.

(19)

If ∆2 ≥ 1, i.e., (1/γij − 1/t)2 ≥ 1, the above bound for
case (iii) turns to be the same as that in (18) for case (ii).
Considering the fact that small γij is required to guarantee
that the off-diagonal elements in case (iii) are small, we have
the constraint γij ≤ t/(1 + t).



Note that there are only K instead of KMtMr off-diagonal
entries contributing to the radius of the Gergosin’s disc. This
reduction comes from the BD structure of Ψ̃ and the sparsity
profile of s characterized by AK1 . Therefore, substituting t
by δo/K, we can easily arrive at the union bound for all off-
diagonal entries under constraint γij ≤ δo/(K+δo). Following
the steps of the standard scheme [11] proves the theorem.

Remarks: Note that we exploit the sparsity structures in
Ψ̃ and s when applying Gergošin’s Disc Theorem for off-
diagonal entries. To emphasize the advantage of the block-
sparse structure in our scenario, we compare to a scenario in
which the block-structure is ignored, and the recovery is based
on a full Toeplitz matrix of size LMtMr × NMtMr and a
sparse vector with KMtMr nonzero entries at arbitrary loca-
tions. From [11], a full Toeplitz matrix satisfies the RIP if L is
on the order of O(K2MtMr log(NMtMr)), which is MtMr

times larger than the bound in (17). Comparing that to (17)
suggests that exploiting the block sparsity reduces the number
of samples needed. This validates previous simulation-based
observations in [7], suggesting that exploiting the structure in
both Ψ and s allows for reduction of the number of samples,
L, needed for target estimation.

V. NUMERICAL RESULTS

We consider a MIMO radar system with Mt = 2 TX
and Mr = 2 RX antennas, distributed uniformly on a circle
of radius of 6, 000m and 3, 000m, respectively. Each TX
radar transmits pulses with interval 0.125 ms and 5GHz
carrier frequency. Each RX radar works with sampling fre-
quency of 5MHz. The signal-to-noise ratio SNR is defined
as 10 log10(σ2

0/σ
2
n). The probing space is discretized on a

20 × 4 grid, with grid spacing equal to 10 m. The velocity
space is Vx ∈ [100, 130]m/s, Vy = 100m/s and is uniformly
discretized on a 4×1 grid. The dimension of the target vector
is 1280. The grid is kept small so that the complexity is
manageable. We randomly generate K targets on the grid. The
reflection coefficient for each target is set to 1.

We first illustrate the choice of the number of pulses P via
the inequality γij ≤ δ2K/(4K + δ2K)|δ2K≤√2−1 , γ0. Fig.
1(a) shows values of γij for all TX/RX pairs under different
values of P . We choose the smallest P that guarantees that all
γij’s are smaller than γ0, i.e., P = 12. Based on Theorem 1,
this value guarantees the performance under the worst cases.
In the following simulation, we will show that even a smaller
P works well too.

In Fig. 1(b), we plot the successful recovery rate for
different number of targets K with L = 6, P = 3. For
comparison, we also implement Lasso which does not exploit
the sparsity structure in s. The success rate decreases as K
increases. As implied by the theorems, L-OPT outperforms
Lasso because it exploits the sparsity structure in s.

VI. CONCLUSIONS

We have considered moving target estimation using dis-
tributed, sparsity based MIMO radars. We have provided the
uniform recovery guarantee by analyzing the A-RIP of the

block diagonal measurement matrix. The proposed theoretical
results validate that the structures in both Ψ and s result in
reduction of the number of measurements needed, or result in
improved target estimation for the same L.

VII. APPENDIX

Lemma 2 ((1.14) in [14]): Let x , [x1, . . . , xQ]T be an
Gaussian random vector with i.i.d entries that have distribution
N (0, σ2). There exists a constant c0 > 0 such that for any
t > 0 it holds that Pr

(
‖x‖2 ≥ (1 + t)

√
Qσ
)
≤ exp(−c0Qt2).
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Fig. 1. Results on the choice of the number of pulses, P , and success
recovery rate for different number of targets, K.
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