1. Overview

- •We propose a joint design for the coexistence of MIMO rac munication system, for a scenario in which the targets fall bins.
- Transmit precoding at the radar transmit antennas and adaptiv transmission are adopted, and are jointly designed to maximiz radar receiver subject to the communication system meeting power constraints.
- We propose a reduced dimensionality design, which has red without degrading radar SINR.

A Joint Design Approach for Spectrum Sharing **between Radar and Communication Systems**

Bo Li, Harshat Kumar and Athina P. Petropulu

Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey {paul.bo.li,hk505,athinap}@rutgers.edu Work supported by the NSF under grant ECCS-1408437

ulation

	4. Problem Form
dars and a com- in different range	• The joint design problem for radar and commulated to maximize the radar SINR, subject rate and TX power constraints
ve communication	– The average communication rate over \tilde{L}
g certain rate and	$\mathbf{C}_{\operatorname{avg}}(\{\mathbf{R}_{xl}\}, \mathbf{\Phi}) \triangleq \frac{1}{\widetilde{L}} \sum_{l=1}^{\widetilde{L}} \log_2 $
duced complexity	* radar interference $\mathbf{R}_{\operatorname{Cin}l} = \mathbf{G}_1 \mathbf{\Phi} \mathbf{G}_1^H + \sigma_C^2 \mathbf{I}$ i * $\mathbf{\Phi} \triangleq \mathbf{P} \mathbf{P}^H / L$ is positive semidefinite. – The overall radar SINR is the average of lo
	$\mathbf{SINR}_k = \frac{1}{L} \sum_{l \in \mathcal{L}_k} \mathbf{Tr} (\mathbf{R}_{\mathbf{R}})$
nain thus causing	* $\mathcal{L}_{k} \triangleq \{l_{k}, \cdots, l_{k} + L - 1\}$: time period of the * $\mathbf{R}_{\text{Rin}l} \triangleq \mathbf{G}_{2}\mathbf{R}_{xl}\mathbf{G}_{2}^{H} + \sigma_{R}^{2}\mathbf{I}$: the communication • The communication rate is maximized using • We present two formulations based on the av
	- Knowledge-based spectrum sharing with
nd 43	$(\mathbf{P}_1) \max_{\{\mathbf{R}_{xl}\} \succeq 0, \mathbf{\Phi} \succeq 0} \mathbf{SINR}, \text{ s.t. }$
	$\sum_{l=1}^{\tilde{L}} \operatorname{Tr}(\mathbf{R}_{xl}) \le P_C, L$
3700	- Robust spectrum sharing with unknown associated with the k -th target is relaxed to
	$\mathbf{SINR}_{k}^{\prime} = \frac{1}{\widetilde{L}} \sum_{l \in \mathbb{N}_{\widetilde{t}}^{+}} \mathbf{Tr} (\mathbf{R}_{l})$
a MIMO-MC radar	Now, the spectrum sharing problem can be $(\mathbf{P}_2) \max_{\{\mathbf{R}_{xl}\} \succeq 0, \mathbf{\Phi} \succeq 0} SINR'$, s.t. same
	• Both (\mathbf{P}_1) and (\mathbf{P}_2) are nonconvex w.r.t. ({ \mathbf{R}_a
	5. Iterative algorithm f
$\begin{array}{c} \text{get} \\ \textbf{The next PRI} \\ \hline \\ l_3 + L \\ l_1 \end{array}$	 A solution can be obtained via alternating of variable at the <i>n</i>-th iteration. First we solve { Bⁿ, } while fixing Φ to be Φⁿ⁻¹
	• Pust, we solve $\{\mathbf{IC}_{xl}\}$ while high $\mathbf{\Psi}$ to be $\mathbf{\Psi}$ $(\mathbf{P}_{\mathbf{R}}) \max \frac{1}{-1} \sum_{\Sigma}^{K} \mathbf{SINR}_{k}'(\{\mathbf{R}\})$
\tilde{L}	$ \begin{array}{c} \langle \mathbf{R}_{kl} \rangle \succeq 0 \ K \ k=1 \\ \text{s.t.} \ \mathbf{C}_{avo}(\{\mathbf{R}_{rl}\}, \mathbf{\Phi}^{n-1}) > C \end{array} \end{array} $
are modeled as	- Rewrite the objective as $\Sigma_{l=1}^{\tilde{L}} f(\mathbf{R}_{xl})$, with $f(\mathbf{R}_{xl})$
$-\underbrace{\mathbf{w}_{R}(l)}_{Noise},$ (1)	It can be shown $(\mathbf{P}_{\mathbf{R}})$ is nonconvex w.r.t. If $-(\mathbf{P}_{\mathbf{P}})$ can be approximated by a convex provided
$[^+_{\tilde{L}},$ (2)	series approximation of $f(\mathbf{R}_{xl})$. The original several iterations of solving $(\tilde{\mathbf{P}}_{\mathbf{R}})$.
lication waveform	• <i>Second</i> , the obtained $\{\mathbf{R}_{xl}^n\}$ are used to solve $(\mathbf{P}_{\Phi}) \max_{\mathbf{A} \in \mathbf{Q}} \operatorname{Tr}(\mathbf{Q}^n \mathbf{\Phi})$
nonormai matrix,	s.t. $\mathbf{C}_{\operatorname{avg}}^{\Psi \succeq 0}(\{\mathbf{R}_{xl}^n\}, \Phi) \geq C$
or the <i>k</i> -th target;	where \mathbf{Q}^n only depends on $\{\mathbf{R}_{xl}^n\}$. - It can be shown that (\mathbf{P}_{\star}) is nonconvey
-th target appears	-We introduce a slack variable Ψ to over alternating optimization again as an inner
he radar and the	• The complete proposed spectrum sharing alg (\mathbf{P}_{Φ}) . It is easy to show that the algorithm co

munication spectrum sharing is forect to satisfying the communication symbols is given by $\mathbf{R}_{2}|\mathbf{I}+\mathbf{R}_{\mathbf{Cin}l}^{-1}\mathbf{H}\mathbf{R}_{xl}\mathbf{H}^{H}|,$ if $l \in \mathbb{N}_L^+$, otherwise $\mathbf{R}_{\mathbf{Cin}l} = \sigma_C^2 \mathbf{I}$. ocal SINRs for all K targets given by $\mathbf{D}_{\mathbf{Rin}l}^{-1} \mathbf{D}_k \mathbf{\Phi} \mathbf{D}_k^H$ e k-th target echo; ion interference. adaptive transmission. vailability of target prior information. known $\{\sigma_{\beta k}^2\}$, $\{l_k\}$, and $\{\theta_k\}$: $\mathbf{C}_{\mathrm{avg}}(\{\mathbf{R}_{xl}\}, \mathbf{\Phi}) \geq C,$ (4a) $L\mathrm{Tr}(\mathbf{\Phi}) \leq P_R,$ (4b)

vn $\{\sigma_{\beta k}^2\}$ and $\{l_k\}$: The local SINR_k to the whole PRI

- $\mathbf{R}_{\mathbf{Rin}l}^{-1}\mathbf{D}_k\mathbf{\Phi}\mathbf{D}_k^H$
- e formulated as constraints as in (\mathbf{P}_1) .
- $_{cl}$, Φ).

for solving (\mathbf{P}_2)

optimization. Let $(\{\mathbf{R}_{xl}^n\}, \mathbf{\Phi}^n)$ be the

- $\{\mathbf{R}_{xl}\}, \mathbf{\Phi}^{n-1})$ (5) $\Sigma, \Sigma_{l=1}^{L} \operatorname{Tr}(\mathbf{R}_{xl}) \leq P_{C}.$
- $\mathcal{E}(\mathbf{R}_{xl}) \triangleq \operatorname{Tr}\left(\left(\mathbf{G}_{2}\mathbf{R}_{xl}\mathbf{G}_{2}^{H} + \sigma_{R}^{2}\mathbf{I}\right)^{-1}\mathcal{D}^{n-1}\right)$ \mathbf{t}_{xl} .
- roblem $(\tilde{\mathbf{P}}_{\mathbf{R}})$ using first order Taylor al problem $(\mathbf{P}_{\mathbf{R}})$ could be solved via
- e the following problem for $\mathbf{\Phi}^n$:
- $LTr(\mathbf{\Phi}) \leq P_R,$
- come the non-convexity and apply iteration.
- lgorithm alternately solves (\mathbf{P}_R) and onverges.

- during which radar only receives.
- target range bin.

- We set $\tilde{L} = 32$, L = 8, $\sigma_C^2 = \sigma_R^2 = 0.01$, $M_{t,R} = M_{r,R} = M_{t,C} = M_{r,C} = 4$.
- and the corresponding propagation delays are 6,18 and 22.
- $\mathbf{H}_{ij} \sim \mathcal{CN}(0,1).$
- null space of G_1 .
- everything is known about the targets.
- loss of 1 dB only.
- fall in the row space of G_1 .

8. Conclusion

- approach for radar and communication spectrum sharing.

6. Reduced Dimentionality Design

Proposition 1. Suppose that $\{\mathbf{R}_{xl}\}$ is initialized by $\{\mathbf{R}_{xl}\} \equiv \mathbf{R}_x^0$. Then, the optimal value of (\mathbf{P}_R) in every iteration of the proposed algorithm could be achieved by $\{\mathbf{R}_{xl}^n\}$ such that for any $l, l' \in \mathbb{N}_L^+$ (or $l, l' \in \mathbb{N}_L^+ \setminus \mathbb{N}_L^+$), it holds that $\mathbf{R}_{xl}^n = \mathbf{R}_{xl'}^n$.

• It suffices to solve a reduced dimensionality problem (\mathbf{P}'_2) , which involves only two matrix variables as the communication transmission covariance matrices respectively for two periods, the one during which radar transmits and the one

• The above chioce of \mathbf{R}_{xl} reasonable: the achieved radar SINR would be constant across different range bins, thus avoiding abrupt SINR degradation for certain

• There are three stationary targets at angles -60° , 0° and 60° w.r.t. to the arrays,

• We take C = 24 bits/symbol and $P_C = LM_{t,C}$ (the power is normalized by the power of the radar waveform). G_1 and G_2 have i.i.d. entries $\mathcal{CN}(0, 0.01)$.

• For comparison, we implement the uniform precoding method and the null space projection (NSP) precoding method, which projects the radar waveform onto the

-The highest SINR, as expected, is acheived by (\mathbf{P}_1) in which pretty much

– The design of (\mathbf{P}_2) , which uses no knowledge about the targets, incurs an SINR

– Interestingly, the low complexity spectrum sharing method of (\mathbf{P}'_2) achieves the same SINR performance as (\mathbf{P}_2) . For this particular example, as compared to (\mathbf{P}_2) , in (\mathbf{P}'_2) the number of matrix variables is reduced from 33 to 3.

- The selfish communication schemes with no precoding achieves much worse performance. The projection-type method performs worst, because targets may

• Simulation results have validated the effectiveness of the proposed joint design

• Radar and communication coexistence is a new line of work, which calls for cooperation across public and private sectors on regulation and policy revision.