
A JOINT DESIGN APPROACH FOR SPECTRUM SHARING BETWEEN RADAR AND
COMMUNICATION SYSTEMS

Bo Li, Harshat Kumar, and Athina P. Petropulu

ECE Department, Rutgers, The State University of New Jersey, Piscataway NJ
{paul.bo.li,hk505,athinap}@rutgers.edu

ABSTRACT

A joint design approach is proposed for spectrum sharing between
MIMO radar and MIMO communication systems. Radar transmit
precoding and adaptive communication transmission are adopted,
and are jointly designed to maximize signal-to-interference-plus-
noise ratio (SINR) at the radar receiver subject to the communication
system meeting certain rate and power constraints. We start with
the design of a system in which knowledge of the target information
is used. Such design can be used to benchmark the performance
of schemes that do not use target information. Then, we propose
a design which does not require target information. In both cases,
the optimization problems are nonconvex with respect to the design
variables and have high computational complexity. Alternating op-
timization and sequential convex programming techniques are used
to find a local maximum. Based on the analysis of the obtained
solution, we propose a reduced dimensionality design, which has
reduced complexity without degrading the radar SINR. Simulation
results validate the effectiveness of the proposed spectrum sharing
framework.

Index Terms— Collocated MIMO radar, spectrum sharing, al-
ternating optimization, sequential convex programming

1. INTRODUCTION

The operating frequency bands of communication and radar systems
often overlap, causing one system to exert interference to the other.
For example, the high UHF radar systems overlap with GSM com-
munication systems, and the S-band radar systems partially overlap
with Long Term Evolution (LTE), and WiMax systems [1–4]. Spec-
trum sharing is a new line of work whose goal is to enable radar and
communication systems to share the spectrum efficiently by mini-
mizing interference effects [3–10].

Spectrum sharing between MIMO radar and communication
systems has been considered in [4–7], where the radar interference
to the communication system is eliminated by projecting the radar
waveforms onto the null space of the interference channel from
radar to communication systems. However, projection-type tech-
niques might miss targets lying in the row space of the interference
channel. Spatial filtering at the radar receiver is proposed in [8]
to reject interference from the communication systems. This ap-
proach, however, works only if the target is not in the direction of
the interference coming from the communication system.

Most of the existing radar-communication spectrum sharing lit-
erature addresses interference mitigation either for the communica-
tion systems [4–7], or for the radar [8]. To the best of our knowledge,
co-design of radar and communication systems for spectrum sharing
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Fig. 1: A MIMO communication system sharing spectrum with a colocated
MIMO radar system.

was proposed in [11–13] for the first time. Compared to radar design
approaches of [4–8], the joint design has the potential to improve
the spectrum utilization due to increased number of design degrees
of freedom. However, the results of [11–13] were developed for a
scenario in which all targets fall in the same range bin, and the prop-
agation delay is properly compensated.

In this paper, we propose a spectrum sharing framework for the
coexistence of MIMO radars and a communication system, for a s-
cenario in which the targets fall in different range bins. The coexis-
tence model considers the radar operation pattern, i.e., transmitting a
short pulsed waveform and listening target echoes for a much longer
period. Radar transmit (TX) precoding and adaptive communica-
tion transmission are adopted and are jointly designed. Unlike the
radar waveform projection based methods, the joint design approach
could potentially align the target returns and the communication in-
terference separately in different subspaces, and thus suppress the
interference without degrading the target returns. We formulate the
design problem as maximization of SINR at the radar receiver sub-
ject to the communication system meeting certain rate and power
constraints. We start with the design of a system in which knowl-
edge of the target information (e.g., delays, reflectivities) is used.
Such design can be used to benchmark the performance of schemes
that do not use target information. Then, we propose a design which
does not require target information. In both cases, the optimization
problems are nonconvex with respect to (w.r.t.) the design variables
and have high computational complexity. Alternating optimization
and sequential convex programming techniques are used to find a
local maximum. Analysis on the obtained solution indicates that a
two-level constant communication rate over the radar TX period and
the radar listening-only period could achieve the same radar SINR
as the adaptive transmission. Based on this fact, we propose a new
design with a much lower dimension which has reduced complexity
without degrading the radar SINR. Simulation results validate the ef-
fectiveness of the proposed spectrum sharing methods over methods
based on noncooperative spectrum access.

The paper is organized as follows. Section 2 introduces the co-
existence model of a MIMO radar system and a communication sys-
tem. The proposed spectrum sharing method is given in Section 3.
Numerical results and conclusions are provided respectively in Sec-
tions 4 and 5. Notation: CN (µ,Σ) denotes the circularly symmetric



complex Gaussian distribution with mean µ and covariance matrix
Σ. | · | and Tr(·) denote the matrix determinant and trace respective-
ly. The set N+

L is defined as {1, . . . , L}. δij denotes the Kronecker
delta. bxc denotes the largest integer not larger than x. AT and AH

respectively denote the transpose and Hermitian transpose of A.

2. SYSTEM MODELS

Consider a MIMO communication system which coexists with a MI-
MO radar system as shown in Fig. 1, sharing the same carrier fre-
quency. The MIMO radar system uses Mt,R TX and Mr,R RX col-
located antennas for target detection/estimation. The communica-
tion transmitter and receiver are equipped with Mt,C and Mr,C an-
tennas, respectively. The communication channel is denoted as H ∈
CMr,C×Mt,C . The interference channel from the radar TX antennas
to the communication receiver is denoted as G1 ∈ CMr,C×Mt,R

[4, 5, 7]; the interference channel from the communication transmit-
ter to the radar RX antennas is denoted as G2 ∈ CMr,R×Mt,C . It is
assumed that the channels H, G1 and G2 are block fading [14] and
perfectly known at the communication transmitter. In practice, the
channel state information can be obtained through the transmission
of pilot signals [4, 15]. The detailed signal models for the MIMO
radar and communication systems are described in the sequel. We
do not assume perfect carrier phase synchronization between the two
systems. A graphical illustration of the received signal at the radar
and communication receivers is provided in Fig. 2.

The MIMO radar employs narrowband orthogonal waveforms,
each of which contains L coded sub-pulses, each of duration Tb. Let
sm , [sm1, . . . , smL]T denote the orthogonal code vector for the
m-th TX antenna. It holds that 〈sm, sn〉 = δmn. The waveforms
are first precoded by matrix P ∈ CMt,R×Mt,R , and then transmit-
ted over carrier fc periodically, with pulse repetition interval TPRI .
Suppose that there are K targets on the same plane with the anten-
nas, each at directions of arrival {θk} and range {dk} w.r.t. the radar
phase center. During each pulse, the target echoes and communica-
tion interference received at the radar RX antennas are demodulated
to baseband and sampled every Tb seconds. The discrete time signal
model for sampling time index l ∈ N+

L̃
is expressed as

yR(l) =

K∑
k=1

βkvr(θk)vTt (θk)Ps(l−lk)+G2x(l)ejα2(l)+wR(l),

(1)
where L̃ = bTPRI/Tbc denotes the total number of samples in

one PRI; yR(l) and x(l) respectively denote the radar received
signal and communication waveform symbol at time lTb; s(l) =
[s1l, . . . , sMt,Rl]

T ; wR(l) is noise distributed as CN (0, σ2
RI);

lk = bτk/Tbc with τk , 2dk/vc; βk denotes the complex radar
cross section for the k-th target; the Swerling II target model is
assumed, i.e., the βk’s vary from pulse to pulse and have distribution
CN (0, σ2

βk); and vr(θ) ∈ CMr,R is the receive steering vector
defined as

vr(θ) ,
[
ej2π〈d

r
1,u(θ)〉/λc , . . . , e

j2π〈dr
Mr,R

,u(θ)〉/λc
]T
,

with dr1 , [xrm y
r
m]T denoting the two-dimensional coordinates of

the m-th RX antenna, u(θ) , [cos(θ) sin(θ)]T , and λc denoting
the carrier wavelength. vt(θ) ∈ CMt,R is the transmit steering vec-
tor and is respectively defined. The second term on the right hand
side of (1) denotes the interference due to the communication trans-
mission x(l) ∈ CMt,C . ejα2(l) is introduced to denote the random
phase offset resulted from the random phase jitters of the oscilla-
tors at the communication transmitter and the MIMO radar receiver
Phase-Locked Loops [12]. In the literature [16–18], phase jitters are
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Fig. 2: An illustration of the received signal at radar and com-
munication receivers. At the radar receiver, echoes returned from
three targets are present during periods Lk, k = 1, 2, 3 with Lk ,
{lk, ..., lk +L− 1}, while the interference from the communication
system is present during the whole PRI. Echoes from the second and
third targets overlap with each other. At the communication receiver,
the radar interference is only present during the first L symbols.

modeled as zero-mean Gaussian processes. Note that s(l) is nonzero
only for l ∈ N+

L . The echo from the k-th target appears starting from
lk and lasts for L samples.

The MIMO communication system uses the same carrier fre-
quency fc. The baseband signal at the communication receiver is
sampled according to the symbol rate Ts, which could be different
that the radar waveform symbol duration Tb. In this paper, we only
consider the matched case, i.e., Ts = Tb; the extension of the pro-
posed methods to the mismatched case is straightforward [12]. The
discrete time communication signal has the following form

yC(l) = Hx(l) + G1Ps(l)ejα1(l) + wC(l), l ∈ N+

L̃
, (2)

where x(l) ∈ CMt,C denotes the transmit vector at the commu-
nication transmitter at time index l; ejα1(l) denotes the random
phase offset between the radar TX carrier and the communication
RX reference carrier [12]; the additive noise wC(l) has distribution
CN (0, σ2

CI). Note that the radar waveform s(l) equals zero when
l > L, which means that the communication system is interference
free during this period. The above model assumes that the radar
transmission is the only interference, while the target returns do not
reach the communication system.

3. PROPOSED SPECTRUM SHARING FRAMEWORK
The figure of merit for the communication system is the achiev-
able channel capacity. For the communication receiver, there
are two distinct periods: one containing l ∈ N+

L̃
\ N+

L , dur-
ing which only additive noise is present, and another one con-
taining l ∈ N+

L , during which both interference and noise are
present. Let the interference covariance during the latter period be
RCil = G1PE{s(l)sH(l)}PHGH

1 . In this paper, as in [13] we
choose S as a random orthonormal matrix. Note that the entries of
S are not independent anymore. However, based on [19, Theorem
3], if Mt,R = O(L/ lnL), the entries of S can be approximated by
i.i.d. Gaussian random variables with distribution N (0, 1/L). The
communication system is aware that S is orthonormal but has no
access to the specific realization of S. Based on the above, the radar
interference covariance matrix equals RCil ≡ RCi , G1ΦGH

1 for
any l ∈ N+

L , where Φ , PPH/L is positive semidefinite.
The overall communication system capacity can be maximized

using adaptive rate transmission [20, 21]. For l ∈ N+
L , the insta-

neous capacity is unknown because the interference plus noise is
not necessarily Gaussian due to the random phase offset α1(l).
In this paper, we are interested in a lower bound of the capac-
ity. However, Gaussian noise with covariance matrix equal to
the actual noise covariance is the worst-case noise for additive
noise channels [22]. The lower bound of the capacity is given by
C(Rxl,Φ) , log2

∣∣I + R−1
CinlHRxlH

H
∣∣ , which is achieved when

the codeword x(l), l ∈ N+
L is distributed as CN (0,Rxl). Similar

to the definition of ergodic capacity [20], the overall communication



capacity should be the average over L̃ symbols, i.e.,

Cavg({Rxl},Φ) , 1/L̃
∑L̃

l=1
log2

∣∣∣I + R−1
CinlHRxlH

H
∣∣∣ , (3)

where {Rxl} denotes the set of all Rxl’s, and RCinl equals RCi +
σ2
CI if l ∈ N+

L , otherwise σ2
CI.

For the radar system, the SINR has been commonly used as fig-
ure of merit in the waveform design literature with the prior knowl-
edge of targets and the surrounding environment [23–26]. The co-
variance of the interference exerted at the radar RX antennas dur-
ing the l-th symbol equals E{G2x(l)ejα2(l)e−jα2(l)xH(l)GH

2 } =
G2RxlG

H
2 . The echoes returned from the k-th target are present

during Lk , {lk, · · · , lk + L− 1}, and have covariance DkΦDH
k

for any l ∈ Lk, where Dk , σβkvr(θk)vTt (θk). The local SINR
associated with the k-th target is averaged over Lk [25]

SINRk = 1/L
∑

l∈Lk

Tr
(
R−1

RinlDkΦDH
k

)
, (4)

where RRinl , G2RxlG
H
2 + σ2

RI. The overall SINR is defined as
SINR , 1/K

∑K
k=1 SINRk({Rxl}Lk ,Φ).

In the following, we first present the formulation based on target
prior information, i.e., knowledge based spectrum sharing, and then
the formulation for the worst case design strategy, which does not
rely on target information, i.e., robust spectrum sharing.

1) Knowledge-based spectrum sharing. In some cases, targets
information can be maintained from the detection and tracking his-
tory [24, 27]. Since in most cases such information does not exist,
the design for this case will be used to benchmark other methods
that are more practical. Assuming that {σ2

βk}, {lk}, and {θk} are
known, the design problem is to maximize the radar SINR, subject
to satisfying the communication rate and TX power constraints:

(P1) max
{Rxl}�0,Φ�0

SINR, s.t. Cavg({Rxl},Φ) ≥ C, (5a)∑L̃

l=1
Tr (Rxl) ≤ PC , LTr (Φ) ≤ PR, (5b)

The constraint of (5a) restricts the communication rate to be at least
C, in order to avoid service outage. The constraints of (5b) restrict
the total communication and radar TX power to be no larger than PC
and PR, respectively.

2) Robust spectrum sharing with unknown {σ2
βk} and {lk}.

Here we consider the scenario where the radar searches in particu-
lar directions of interest given by set {θk} for targets with unknown
RCS variances and delays [26, 28]. The worst possible target RCS
variances are given by {σ2

βk} ≡ σ2
β , where σ2

β is the smallest target
RCS variance that could be detected by the radar. Since Lk is un-
known, the local SINRk associated with the k-th target is relaxed to
the whole PRI

SINR′k = 1/L̃
∑

l∈N+

L̃

Tr
(
R−1

RinlDkΦDH
k

)
, (6)

where Dk , σβvr(θk)vTt (θk). The overall SINR is given by
SINR′ , 1/K

∑K
k=1 SINR′k. Now, the spectrum sharing problem

can be formulated as
(P2) max

{Rxl}�0,Φ�0
SINR′, s.t. same constraints as in (P1).

Both (P1) and (P2) are nonconvex w.r.t. variable pair ({Rxl},Φ).
In the following, we will focus on the algorithm that solves (P2),
which could also be adapted to solve (P1).

3.1. Iterative algorithm for solving (P2)
A solution can be obtained via alternating optimization. Let
({Rn

xl},Φn) be the variable at the n-th iteration. First, we solve
{Rn

xl} while fixing Φ to be Φn−1:

(PR) max
{Rxl}�0

1/K
∑K

k=1
SINR′k({Rxl},Φn−1)

s.t. Cavg({Rxl},Φn−1) ≥ C,
∑L̃

l=1
Tr (Rxl) ≤ PC .

(7)

Let us rewrite the objective as
∑L̃
l=1 f(Rxl), with

f(Rxl) , Tr
((

G2RxlG
H
2 + σ2

RI
)−1

Dn−1

)
, (8)

where Dn−1 =
∑K
k=1 DkΦ

n−1DH
k , and constant scale factors are

omitted. It can be shown that f(Rxl) is convex w.r.t Rxl. Problem
(PR) is nonconvex w.r.t. Rxl, because it maximizes a convex func-
tion. The sequential convex programming technique is used to find a
local optimal solution [29]. f(Rxl) can be approximated by the first
order Taylor series expansion at R̄xl as

f(Rxl) ≈f̃(Rxl) , f(R̄xl)

+ Tr

[(
∂f(Rxl)

∂<(Rxl)

)T
Rxl=R̄xl

(Rxl − R̄xl)

]
,

where ∂f(Rxl)
∂<(Rxl)

= −[GH
2 R−1

RinlD
n−1R−1

RinlG2]T .

We can see that f̃(Rxl) is now an affine function of Rxl. Prob-
lem (PR) can be approximated by the following convex problem:

(P̃R) max
{Rxl}�0

∑L̃

l=1
f̃(Rxl)

s.t. Cavg({Rxl},Φn−1) ≥ C,
∑L̃

l=1
Tr (Rxl) ≤ PC .

(9)

which can be solved with available convex programming packages.
The original problem (PR) could be solved via several iterations
of solving (P̃R). At each iteration, {R̄xl} is updated with the op-
timal solution of the previous iteration. The iteration stops when
the increase of SINR is small. In addition, we observe that both
the objective and constraints are separable functions of {Rxl}. D-
ual decomposition technique could be used to solve (9) with lower
computation complexity.

Second, the obtained {Rn
xl} are used to solve the following

problem for Φn:
(PΦ) max

Φ�0
Tr (QnΦ) s.t. Cavg({Rn

xl},Φ) ≥ C,LTr (Φ) ≤ PR,

where Qn ,
∑K
k=1 DH

k

[∑L̃
l=1

(
G2R

n
xlG

H
2 + σ2

RI
)−1
]
Dk.

Let Cl(Rn
xl,Φ) , log2

∣∣I + R−1
CinlHRn

xlH
H
∣∣; this is function

of Φ only if l ∈ N+
L . The first constraint in (PΦ) can be rewritten

as
∑L
l=1 Cl(R

n
xl,Φ) ≥ L̃C −

∑L̃
l=L+1 Cl(R

n
xl) , C̃n. We could

express Cl(Rn
xl,Φ), ∀l ∈ N+

L , as follows

Cl(R
n
xl,Φ) = log2

∣∣∣RCinl + HRn
xlH

H
∣∣∣− log2 |RCinl|

= log2 |G1ΦGH
1 + R̃n

xl| − log2 |G1ΦGH
1 + σ2

CI|,
(10)

where R̃n
xl , σ2

CI + HRn
xlH

H . We can see that Cl(Rn
xl,Φ) is

in the form of a concave function plus a convex function. It can be
shown that Cl(Rn

xl,Φ) is actually a convex function of Φ. Thus,
(PΦ) is nonconvex because the above constraint imposes a noncon-
vex feasible set on Φ. A similar problem is considered in [13, Eq.
(5)]. As in [13], we introduce a slack variable Ψ to overcome the
non-convexity and apply alternating optimization again as an inner
iteration. Let (Φni,Ψni) be the variables at the i-th inner iteration
corresponding to the n-th outer alternating iteration. Φni is initial-
ized as Φn−1 for i = 0. Given Φn(i−1), Ψni is obtained as follows

Ψni =
(
G1Φ

n(i−1)GH
1 + σ2

CI
)−1

. (11)



Based on Ψni, Φni is obtained by solving the following problem

(P′Φ) max
Φ�0

Tr (QnΦ) , s.t. LTr (Φ) ≤ PR,∑
l∈N+

L

log2

∣∣∣I + GH
1 (R̃n

xl)
−1G1Φ

∣∣∣− LTr
(
GH

1 ΨniG1Φ
)
≥ C′,

where C′ , C̃n + L
{
σ2
CTr(Ψni)− log2 |Ψni| −Mr,C

}
−∑

l∈N+
L

log2 |R̃n
xl|. (P′Φ) is convex w.r.t. Φ and thus can be solved

using available software packages [29].
The complete proposed spectrum sharing algorithm alternately

solves (PR) and (PΦ) as stated above. It is easy to show that the
value of SINR is nondecreasing during the alternating iterations. Al-
so, the SINR has a upper bound. Therefore, the algorithm converges.
The iteration stops if the improvement of SINR is smaller than a cer-
tain threshold.

3.2. Discussion

The adaptive transmission technique adopted by the communica-
tion system greatly increases the complexity of the spectrum shar-
ing problem (P2). The following property can be used to reduce the
complexity of solving (P2) without any performance degradation.

Proposition 1. Suppose that {Rxl} is initialized by {Rxl} ≡ R0
x.

Then, the optimal value of (PR) in every iteration of the proposed
algorithm could be achieved by {Rn

xl} such that for any l, l′ ∈ N+
L

(or l, l′ ∈ N+

L̃
\ N+

L ), it holds that Rn
xl = Rn

xl′ .

The proof can be found in the extended version [30]. The above
proposition indicates that it suffices to use only two matrix variables,
Rx1 and Rx2, as the communication transmission covariance matri-
ces respectively for two periods, the one during which radar trans-
mits and the one during which radar only receives. The spectrum
sharing problem can be reformulated as following

(P′2) max
{Rxl}�0,Φ�0

1

K

2∑
l=1

Tr
(
ηlR

−1
Rinl

∑K

k=1
DkΦDH

k

)
s.t.

2∑
l=1

ηlCl(Rxl,Φ) ≥ C,
2∑
l=1

ηlL̃Tr (Rxl) ≤ PC , LTr (Φ) ≤ PR,

where η1 , L/L̃ is called the duty cycle and η2 = 1− η1. Again,
alternating optimization and sequential convex programming tech-
niques used in Section 3.1 could be applied to solve (P′2), which
could achieve the same radar SINR objective as (P2). We can ob-
serve that the robust communication transmission scheme for un-
known target ranges is constant rate transmission over two periods.
This is reasonable in the sense that the achieved radar SINR would be
constant across different target ranges, and thus abrupt SINR degra-
dation for certain target ranges would be avoided.

4. NUMERICAL RESULTS

We next conduct some simulation results to quantify the comparative
performance of the designs based on solving (P1), (P2), (P′2), and
also include results based the projection method of [7].

We set the number of samples per PRI to L̃ = 32, the num-
ber of radar waveform symbols to L = 8, the noise variance to
σ2
C = σ2

R = 0.01, and the number of antennas to Mt,R = Mr,R =
Mt,C = Mr,C = 4. The MIMO radar system consists of collo-
cated TX and RX antennas forming half-wavelength uniform linear
arrays. The radar waveforms are chosen from the rows of a random
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Fig. 3: SINR performance vs different values of radar TX power.

orthonormal matrix [11]. There are three stationary targets at an-
gles −60◦, 0◦ and 60◦ w.r.t. to the arrays, and the corresponding
target propagation delays are 6, 18 and 22. This corresponds to the
scenario depicted in Fig. 2. For the communication capacity and
power constraints, we take C = 24 bits/symbol and PC = L̃Mt,C

(the power is normalized by the power of the radar waveform). The
interference channels G1 and G2 are generated with entries which
are independent and distributed as CN (0, 0.01). The channel H has
independent entries, distributed as CN (0, 1). The communication
covariance matrix and the radar precoding matrix are jointly opti-
mized according to (P1), (P2) and (P′2) in Section 3. For com-
parison, we implement methods based on uniform precoding, i.e.,
P =

√
LPR/Mt,RI, and null space projection (NSP) precoding,

i.e., P =
√
LPR/Mt,RVVH , where V contains the basis of the

null space of G1 [7]. In both of the aforementioned methods, selfish
communication is considered, i.e., the communication system mini-
mizes the transmit power to achieve capacity C without any concern
about the interferences it exerts to the radar system.

Fig. 3 shows the SINR results for different values of the radar
transmit power budget (PR). The radar power budget per antenna
ranges from 1 to 20 times of the communication power budget per
antenna. The highest SINR, as expected, corresponds to the case in
which pretty much everything is known about the targets, i.e., via the
joint design of P and {Rxl} resulting from (P1). Interestingly, the
design of (P2), which uses no knowledge about the targets incurs an
SINR loss of 1 dB only. Also interestingly, the low complexity spec-
trum sharing method of (P′2), which does not use any knowledge
about the targets, achieves the same SINR performance as (P2). For
this particular example, as compared to (P2), in (P′2) the number of
matrix variables is reduced from 33 to 3.

As expected, the selfish communication schemes with no pre-
coding involves no cooperation between the radar and commu-
nication systems, and thus achieves the worst performance. The
projection-type method of [7] performs even worse, because targets
may fall in the row space of G1.

5. CONCLUSION

We have considered a general spectrum sharing framework between
a MIMO radar and a MIMO communication system. Depending on
the availability of target range information, a knowledge-based and
a robust spectrum sharing approach were proposed to maximize the
radar SINR while satisfying the communication requirements. The
resulting nonconvex problems were solved by using alternating op-
timization and sequential convex programming. Simulation results
validate the effectiveness of the proposed spectrum sharing methods.
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