Proof of Proposition 1 in "A Joint Design Approach for Spectrum Sharing between Radar and Communication Systems"

We state Proposition 1 in [1] as follows:

Proposition 1 ([1]). Suppose that $\{\mathbf{R}_{xl}\}$ is initialized by $\{\mathbf{R}_{xl}\} \equiv \mathbf{R}_x^0$. Then, the optimal value of (\mathbf{P}_R) in every iteration of the proposed algorithm could be achieved by $\{\mathbf{R}_{xl}^n\}$ such that for any $l, l' \in \mathbb{N}_L^+$ (or $l, l' \in \mathbb{N}_L^+ \setminus \mathbb{N}_L^+$), it holds that $\mathbf{R}_{rl}^n = \mathbf{R}_{rl'}^n$.

Proof: The proposition can be proved using induction. We focus on the proof for $l, l' \in \mathbb{N}_L^+$ in the following. The proof for $l, l' \in \mathbb{N}^+_{\tilde{L}} \setminus \mathbb{N}^+_L$ is similar.

From the proposition, we know that $\{\mathbf{R}_{xl}\}$ is initialized such that $\mathbf{R}_{xl}^0 = \mathbf{R}_{xl'}^0 = \mathbf{R}_x^0, \forall l, l' \in \mathbb{N}_L^+$. We need to show that the optimal value of (\mathbf{P}_R) in the *n*-th iteration is also achieved by $\{\mathbf{R}_{xl}^n\}$ such that $\mathbf{R}_{xl}^n = \mathbf{R}_{xl'}^n$, $\forall l, l' \in \mathbb{N}_L^+$. Because $\{\mathbf{R}_{xl}^n\}$ is obtained via several inner iterations of solving $(\tilde{\mathbf{P}}_{\mathbf{R}})$ in [1], it suffices to show that the above property could be passed on between the iterations of solving $(\mathbf{P}_{\mathbf{R}})$.

Suppose that, in the (i-1)-th inner iteration, the optimal value of $(\tilde{\mathbf{P}}_R)$ is achieved by $\{\mathbf{R}_{xl}^{n(i-1)}\}$ such that $\mathbf{R}_{xl}^{n(i-1)} = \mathbf{R}_{xl'}^{n(i-1)}, \forall l, l' \in \mathbb{N}_{L}^{+}. \text{ During the } i\text{-th iteration, } \{\mathbf{R}_{xl}^{ni*}\} \text{ is obtained by solving } (\tilde{\mathbf{P}}_{R}) \text{ with } \{\bar{\mathbf{R}}_{xl}\} = \{\mathbf{R}_{xl}^{n(i-1)}\}. \text{ We will show that } \mathbf{R}_{xl}^{ni} \equiv 1/L \sum_{l=1}^{L} \mathbf{R}_{xl}^{ni*} \triangleq \mathbf{R}_{x}^{ni}, \forall l \in \mathbb{N}_{L}^{+} \text{ is also feasible and achieves the same radar}$ SINR as $\{\mathbf{R}_{xl}^{ni*}\}_{l \in \mathbb{N}^+}$ does. Based on the concavity of $C_l(\mathbf{R}_{xl}, \cdot)$, we have

$$\sum_{l=1}^{L} C_l(\mathbf{R}_{xl}^{ni*}, \cdot) \leq L C_l\left(\mathbf{R}_{x}^{ni}, \cdot\right).$$

For the communication transmission power, it trivially holds that $\sum_{l=1}^{L} \operatorname{Tr}(\mathbf{R}_{xl}^{ni*}) = L\operatorname{Tr}(\mathbf{R}_{x}^{ni})$. Therefore, $\{\mathbf{R}_{x}^{ni}\}$ is also feasible. The objective $\tilde{f}(\mathbf{R}_{xl})$ of $(\tilde{\mathbf{P}}_{R})$ in the *i*-th iteration is affine w.r.t. \mathbf{R}_{xl} with coefficient depending on $\bar{\mathbf{R}}_{xl} = \mathbf{R}_{xl}^{n(i-1)}$. Given that $\mathbf{R}_{xl}^{n(i-1)} = \mathbf{R}_{xl'}^{n(i-1)}$, $\forall l, l' \in \mathbb{N}_{L}^{+}$, the affine functions $\tilde{f}(\cdot)$ for are identical for any $l \in \mathbb{N}_{L}^{+}$. Therefore, $\{\mathbf{R}_{xl}^{ni}\}$ achieves the same objective value as $\{\mathbf{R}_{xl}^{ni*}\}_{l\in\mathbb{N}_{L}^{+}}$ does.

Proposition 1 is proved.

REFERENCES

^[1] B. Li, H. Kumar, and A. P. Petropulu, "A joint design approach for spectrum sharing between radar and communication systems," in submitted to IEEE International Conference on Acoustics, Speech and Signal Processing, March 2016.