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System Model and Background 

• We consider the structured sampling of structured 
signals, more specifically, using block diagonal (BD) 
measurement matrices to sense signals with uniform 
partitions that share the same sparsity profile. This 
model arises in distributed compressive sensing 
systems. 

• We are interested in the efficient recovery of the 
sparse signal and the corresponding performance as 
determined by the restricted isometry property (RIP) 
of the measurement matrix.  

• We characterize the RIP of the random BD matrix  with 
respect to signals with the aforementioned structure.  

• We study the multiple measurement vector (MMV) 
problem as a special case of the general problem 
considered here. 
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• The sparse signal vector 𝐱 ≜ 𝐱1
𝑇 , … , 𝐱𝐽

𝑇 𝑇
 lies in 

 
• This model arises in distributed compressive sensing 

systems for time-variant sparse channel estimation, 
hyper-spectral imaging and sensor networks. 

Restricted isometry property of a general matrix  with 

respect to signals in 0
𝐾 (0-𝑅𝐼𝑃): 

Matrix  ∊ 𝑀 ×𝑁  satisfies the RIP over 0
𝐾 with constant 

𝛿𝐾 , or equivalently the 0-𝑅𝐼𝑃(𝐾, 𝛿𝐾),  if for every 𝐱 ∊ 0
𝐾 

it holds that 
 

 
• The above definition can be applied for general union 

of subspaces including 0
𝐾 . 
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Comparison with Different CS Models 

Let us consider 4 different models that consider 

structures in  ∊ 𝑀 ×𝑁  and/or 𝐱 ∊ 𝑀 ×𝑁  with 𝐽𝐾 
nonzero entries:  
• Standard CS [2] with a dense random matrix  and an 

arbitrarily 𝐽𝐾-sparse 𝐱 requires  𝑀 = (𝐽𝐾𝑙𝑜𝑔
𝑁

𝐾
) 

• Model based CS [1,3] with a dense random matrix  

and 𝐱 ∊ 𝑏𝑙𝑘
𝐾  requires 𝑀 = (𝐾𝑙𝑜𝑔

𝑁

𝐾
+ 𝐽𝐾) 

• Model in Corollary 1 with BD random matrix  and 

arbitrarily 𝐽𝐾-sparse 𝐱 requires 𝑀 = (𝐽2𝐾𝑙𝑜𝑔
𝑁

𝐾
) 

• Distributed CS in this paper with BD random matrix  

and 𝐱 ∊ 0
𝐾 requires 𝑀 = (𝐽𝐾𝑙𝑜𝑔

𝑁

𝐾
+ 𝐽2𝐾). 
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Sparse Signal Recovery 

𝒍𝟎–norm solution 
 
 
where 
• 𝑛 contains the 𝑛-th entries of all 𝐱𝑗 , 𝑗 = 1,… , 𝐽; 

• 𝐼 𝑎 =  
1, 𝑎 ≠ 0
0, 𝑎 = 0

. 

Uniqueness of 𝑙0–norm solution is guaranteed as follows: 
𝐱 ∊ 0

𝐾 can be uniquely recovered by solving (𝑃0), if  

satisfies the  0-𝑅𝐼𝑃(2𝐾, 𝛿2𝐾) with 𝛿2𝐾<1. 

𝒍𝟏–norm solution  
• By directly applying the L-OPT in [1], we have 

 
 

where 
•    
• 𝑀(): permutation of columns of . 
      

Proposition 1: 𝑀() satisfies the 𝑏𝑙𝑘-RIP(𝐾, 𝛿𝐾) if 
and only if  satisfies the  0-𝑅𝐼𝑃(𝐾, 𝛿𝐾). 
 

If the condition in (2) holds with 𝛿2𝐾< 2-1, i.e., the BD 
matrix  satisfies the 0-𝑅𝐼𝑃(2𝐾, 𝛿2𝐾), (𝑃1) can uniquely 
recover the sparse vector 𝐱 in 0

𝐾 [1].  
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Proposed Application to the MMV Model 

The multiple measurement vector (MMV) model 
𝐘 = 𝐌𝐗, 𝐌 ∈ 𝑀×𝑁, 𝐗 ∈ 𝑁×𝐽    (3) 

• 𝐘 has 𝐽 columns containing measurements, 𝐗 has 𝐾 
nonzero rows;  

• SMV: special case of MMV for 𝐽=1. 
 

We reformulate the MMV model as follows 

 
If the condition in (2) holds with 𝛿2𝐾< 2-1, i.e., the BD 
matrix diag(𝐌, … , 𝐌) satisfies the 0-RIP(2𝐾, 𝛿2𝐾), 
applying (𝑃1) will uniquely recover 𝐗 with probability at 
least 1-𝑒−𝑡.  

• For MMV  𝑀 is  𝐾𝑙𝑜𝑔
𝑁

𝐾
+ 𝐽𝐾 ; for SMV 𝑀 is (𝐾𝑙𝑜𝑔

𝑁

𝐾
) . 

The above result is the first strict RIP-based worst case 
analysis for the MMV model . 
 

Remark: The MMV results in [1, Section VI.A] is not 
applicable for random M.  

 Random BD Matrices Satisfying -RIP 
• Lemma 1: concentration of random BD matrices 
Let  be a BD matrix as defined in (1) with entries of 

distribution (0, 1 𝑀 ). Then for any fixed x ∊ 𝑁   
 
 
where 𝑐>0 is a constant, >0 is a small value. 
• Theorem 1:0-RIP for random BD matrices 

The block diagonal matrix  ∊ 𝑀 ×𝑁  satisfies the  0-
𝑅𝐼𝑃(𝐾, 𝛿𝐾) for some 𝛿𝐾  ∊(0,1), 𝑡>0 and 

 
 

with probability at least 1 − 𝑒−𝑡, where 𝑐1 < 9/𝑐. 
• Corollary 1: standard RIP for random BD matrices 

The BD matrix  ∊ M ×N  satisfies the RIP(K, 𝛿𝐾) for 
some δK ∊(0,1), t>0 with probability at least 1-𝑒−𝑡 if 
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