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Abstract—The paper considers structured sampling of struc-
tured signals, more specifically, using block diagonal (BD) mea-
surement matrices to sense signals with uniform partitions that
share the same sparsity profile. This model arises in distributed
compressive sensing systems. In general, the fact that the number
of nonzero entries in the measurement matrix is smaller than
in a dense matrix leads to the need for more measurements.
However, taking advantage of a certain structure in the sparse
signal allows one to relax the conditions on the measurement
matrix for the restricted isometry property (RIP) to hold, thus
allowing for higher compression rate. We systematically provide
guarantees for a unique solution, and also an efficient recovery
method. The analysis relies on the RIP of the random BD matrix
for signals in a particular union of subspaces. Also, we show
how our theoretical results can be used to analyze the multiple
measurement vector (MMV) problem.

Index Terms—Compressive Sensing, Multiple Measurement
Vectors, Block Diagonal Matrices, Restricted Isometry Property,
Block Sparsity.

I. INTRODUCTION

While random measurement matrices have dominated the
studies of compressive sensing [1], [2], block diagonal mea-
surement matrices have only recently started attracting atten-
tion. Such matrices arise due to physical constraints of the
sensing system ([3] and references therein) [4]. Meanwhile,
recent works have investigated structure in the measured
signals in addition to sparsity, which can be exploited to
reduce the number of required measurements. Examples of
such structures include multiple measurement vectors [5]–[7]
and union of subspaces [8]–[10].

To the best of our knowledge, the use of structured mea-
surement matrices for structured signals has received limited
attention [12], and is the point of this paper. In particular, we
consider the following general model for the measured signal:y1

...
yJ


︸ ︷︷ ︸
y∈RM̃

=

Φ1

. . .
ΦJ


︸ ︷︷ ︸

Ψ∈RM̃×Ñ

x1

...
xJ


︸ ︷︷ ︸
x∈RÑ

(1)

where yj ∈ RM , Φj ∈ RM×N , xj ∈ RN , M̃ = JM
and Ñ = JN . Several applications can be described by this
model. For example, in the context of distributed compressive
sensing systems [4], [12], yj corresponds to the compressed
signal obtained at node j based on the measurement matrix
Φj . Other applications include time-variant sparse channel
estimation, hyperspectral imaging, cognitive radio and sensor
networks ([3] and references therein). Later in this paper,
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we will show that the multiple measurement vector (MMV)
problem also fits the model of (1). In general, the fact that
the number of nonzero entries in Ψ is smaller than in a dense
matrix leads to the need for more measurements. However,
taking advantage of a certain structure in the signal allows
one to relax the conditions which Ψ has to meet in order to
satisfy the restricted isometry property, thus enabling a higher
compression rate.

The contribution of this paper is as follows. Under the
assumption that the Φj’s in (1) contain i.i.d. Gaussian entries,
and at the same time, the signals {xj}Jj=1, share the same
sparse support, we establish the RIP of the random block
diagonal (BD) matrix Ψ for structured signals x based on
the concentration of measure (CoM) of random BD matrices
(see Theorem 1). By leveraging results in [10], we provide
guarantees for a unique solution (see Theorem 2), and also
for an efficient recovery method (see Theorem 3). Also, we
reformulate the MMV problem to fit the model of (1) and
specialize our analytical results for the MMV problem (see
Theorem 4).

II. MAIN RESULTS

Let us rewrite (1) as

y = Ψx (2)

where x lies in the union of subspaces AK , {x ∈
RÑ |supp(x1) = · · · = supp(xJ), |supp(xj)| ≤ K}. The
operator supp(·) and |·| denote the index set of nonzero entries
of a vector and the cardinality of a set, respectively. Thus, AK
contains vectors of size Ñ , in which all blocks xj share the
same sparse support. Here, we assume that {Φj ∈ RM×N}Jj=1

are matrices with i.i.d. entries, distributed as N (0, 1/M).
Let us define a special case of the A-restricted isometry

introduced in [8], in which the union of subspaces is the AK
defined above.

Definition 1: Matrix Ψ ∈ RM̃×Ñ satisfies the RIP over
AK with constant δK , or equivalently the A-RIP(K, δK), if
for every x ∈ AK it holds that

(1− δk)‖x‖22 ≤ ‖Ψx‖22 ≤ (1 + δk)‖x‖22, (3)

Successful signal recovery requires that the block diagonal
matrix Ψ satisfies the A-RIP with proper constants, which is
considered in the following subsection.



A. Random BD Matrices Satisfying A-RIP

The subspace RIP analysis for BD matrices is based on
the concentration inequality of random BD matrices which
has been studied in [11]. However, the result in [11] depends
explicitly on x and thus cannot be directly used to analyze the
RIP of BD matrices. In the following lemma, we eliminate the
dependence on x by using the upper bound of the result in
[11, Theorem III.1 and III.2].

Lemma 1 (Upper bound of result in [11]): Let Ψ be a BD
matrix as defined in (2) with entries of distribution N (0, 1

M ).
Then for any fixed x ∈ RÑ

P(|‖Ψx‖22 − ‖x‖22| ≥ ε‖x‖22) ≤ 2e−cMε2 (4)

where c is an absolute constant.
Based on the above CoM result, we have the following A-

RIP for random BD matrices.

Theorem 1: Suppose that J , M and N are given and M̃ =
JM , Ñ = JN . Then, the block diagonal matrix Ψ ∈ RM̃×Ñ ,
as stated in Lemma 1, satisfies the A-RIP(K, δK) for some
δK ∈ (0, 1), t > 0 and

M ≥ c1
δ2K

(
K log

N

K
+ JK log(e(1 +

12

δK
)) + log 2 + t

)
(5)

with probability at least (1− e−t), where c1 ≤ 9/c.
Proof: The concentration inequality for the random BD

matrix Ψ was given in Lemma 1. Given any set of indices
T with |T | ≤ JK, let us denote by XT the subspace of all
vectors in RÑ that are zero outside T . Based on Lemma 5.1 in
[2], it holds that for all x in any subspace XT and δK ∈ (0, 1),
matrix Ψ will fail to satisfy

(1− δK)‖x‖22 ≤ ‖Ψx‖22 ≤ (1 + δK)‖x‖22 (6)

with probability no larger than 2(1 + 12/δK)JKe−cMδ2K/9.
Here, the {xj}Jj=1 in x have some additional structure, i.e.,
share the same sparsity profile. There are

(
N
K

)
≤ (eN/K)K

such subspaces, instead of
(
Ñ
JK

)
in the scenario of sparse

vectors with no additional structure. Hence, the union bound
can be used to generate the total failure probability, i.e.,

P((6) fails) ≤ 2(eN/K)K(1 + 12/δK)JKe−cMδ2K/9.

On setting the above right-hand-side term to less than e−t, the
claim of (5) follows.

Next, based on the A-RIP result, we introduce recovery
methods with performance guarantees.

B. Recovery Methods and Guarantees
Let the sets In, n = 1, . . . , N , with cardinality J , contain

the indices of the nth entries from all blocks {xj}Jj=1. We can
recover x by solving the optimization problem

min
x

N∑
n=1

I
(
‖x[In]‖2

)
s.t. y = Ψx (7)

where x[In] denotes a vector containing entries with indices
In of x, I(a) is the indicator function, i.e., if a = 0, I(a) = 0,
else I(a) = 1. Let the permutation Pv : RÑ → RÑ rearrange
the entries of x as Pv(x) = [x[I1]; . . . ;x[IN ]]. One can see

that Pv(x) is a block sparse vector. The cost function in (7),
denoted by ‖x‖0,I , counts the number of nonzero blocks in
Pv(x). If ‖x‖0,I ≤ K, we should have x ∈ AK .

Theorem 2: x ∈ AK can be uniquely recovered by solving
(7), if Ψ satisfies the A-RIP(2K, δ2K) with δ2K < 1.

The proof follows along the lines of the proof when the
standard RIP considered and is omitted. The solution to (7)
can be found by a combinatorial search, usually referred to as
the `0-norm approach. For efficient recovery, we can solve the
following convex optimization problem

min
x

N∑
n=1

‖x[In]‖2 s.t. y = Ψx (8)

The cost function in (8) first calculates the `2-norms inside
the blocks of Pv(x), and then sums the results up to get the
`1-norm across the blocks x[In]. Thus, the entries in a given
index set would be forced to be either zero or nonzero. As for
x, all the J subvectors would have the same sparsity profile.
The above problem can be formulated into a standard second-
order cone programming problem, which could be solved
efficiently using standard software packages.

Note that the optimization problem in (8) is equivalent to
that in eqn. (26) of [10]. Therefore, if we can establish a certain
equivalence for the conditions on the measurement matrices,
then the guarantees of exact recovery in [10, Theorem 1] can
be leveraged for our case.

In [10], the block-RIP condition was defined as follows.

Definition 2: Matrix D ∈ RM̃×Ñ satisfies the block RIP
with constant δK , if for any c ∈ RÑ that has at most K
nonzero blocks out of its N uniform partition blocks we have

(1− δk)‖c‖22 ≤ ‖Dc‖22 ≤ (1 + δk)‖c‖22, (9)

abbreviated by block-RIP(K, δK).
Let PM denote the column permutation of Ψ, so that Ψx =

PM (Ψ)Pv(x). Clearly, if {xj}Jj=1 in x are K-sparse and have
the same support, then Pv(x) is block K-sparse.

Proposition 1: Ψ satisfies the A-RIP(K, δK) if and only if
PM (Ψ) satisfies the block-RIP(K, δK).

Proof: Ψ satisfying the A-RIP(K, δK) means that (3)
holds for every x ∈ AK . We know that Pv(x) is block K-
sparse and Ψx = PM (Ψ)Pv(x). By the fact that ‖x‖22 =
‖Pv(x)‖22, (9) holds for PM (Ψ) and every Pv(x) that is
block K-sparse, which means that PM (Ψ) satisfies the block-
RIP(K, δK). Since only permutation involved in the transfor-
mation between these two RIPs, the strict equivalence also
holds when we consider the probabilistic nature of the RIP
condition.

Based on the above proposition, we can easily arrive at the
following theorem regarding the exact noise-free recovery of
x by leveraging Theorem 1 of [10].

Theorem 3: For the system model as in (2), let y = Ψx0

be the measurement of the sparse vector x0 ∈ AK . If the
block diagonal matrix Ψ satisfies the A-RIP(2K, δ2K) with
δ2K <

√
2− 1, then there is a unique sparse vector x in AK

consistent with y and the solution of (8) is equal to x0.



Proof: From Proposition 1, we obtain that PM (Ψ) sat-
isfies the block-RIP(2K, δ2K) also with δ2K <

√
2 − 1. The

optimization problem in [10, (26)] is actually

min
Pv(x)

N∑
n=1

‖x[In]‖2 s.t. y = PM (Ψ)Pv(x)

which will find the unique solution Pv(x0) based on [10,
Theorem 1]. Thus, the uniqueness of the solution of (8) is
guaranteed since its solution is only the inverse permutation
of the solution Pv(x0).

It is practical to consider the situation in which the measure-
ments are noisy and the sparse vector is not exactly in AK .
Suppose we have corrupted measurements as y = Ψx + n
where bounded noise is with ‖n‖2 ≤ ε. The robust recovery
of x can be achieved by

min
x

N∑
n=1

‖x[In]‖2 s.t. ‖y −Ψx‖2 ≤ ε (10)

Similarly, by leveraging the conditions and recovery perfor-
mance of [10, Theorem 2] we get the corresponding theorem
regarding the performance of the above model.

Relation to Literature: One of our main results is the A-
RIP analysis of BD matrix Ψ, given in Theorem 1, for which
there is no prior literature. The work in [10] only provided
the block-RIP analysis for dense measurement matrices. Note
that applying [10, Theorem 1 and 2 ] to PM (Ψ) requires the
block-RIP of PM (Ψ), which has a special structure. Adopting
the approach of [10, Section VII] to analyze the block-RIP of
PM (Ψ) would require its CoM inequality, for which there
are no results in the literature. However, this difficulty can be
bypassed by our result on the A-RIP analysis for Ψ along
with Proposition 1.

Based on the A-RIP analysis and the equivalence result in
Preposition 1, Theorem 3 establishes the recovery performance
by leveraging results from [10].

The standard RIP for random BD matrices was considered
in [4] based on an improved bound on the suprema of chaotic
random processes. Their approach does not take into account
the special structure of x, and thus cannot be directly used to
generate the results in our paper.

The work of [12] studied the same model of (2), referred to
as distributed compressive sensing (DCS) from a distributive
coding perspective. A graphical model was introduced to
provide the bound on the number of noiseless measurements
required for signal recovery. However, the achieved bound
is akin to that for the `0-norm approach. In this paper, we
have provided both uniqueness guarantees for the `0-norm
approach, and the equivalence results for the efficient `1-norm
recovery approach.

III. REVISIT THE MMV MODELS

In this section, we specialize our model to the MMV
problem and provide the first equivalence results based on
strict RIP analysis.

A. Background

MMV problems have attracted interest due to their wide
applicability [5]–[7]. The most detailed theoretical analysis
establishes equivalence results for the mixed `p/`1 approach
based on mutual coherence [5], which shows no improvement
over the single measurement vector case.

The MMV model observes a M × J dimensional matrix
of measurements Y = MX, where M ∈ RM×N is a matrix
with i.i.d. zero-mean Gaussian entries and variance 1/M , and
X is an unknown N × J matrix that has at most K nonzero
rows. Each column of X is one measurement vector.

In [10], the multiple measurement vectors problem was
transformed into the single vector model as

vec(YT ) = (M⊗ IJ)vec(XT ), (11)

in which block-sparsity arises in vec(XT ). The new mea-
surement matrix (M⊗ IJ) is not a dense matrix and has a
special structure. The authors could not provide its accurate
block-RIP based on their method in [10, Section VII], and
claimed that the block-RIP of (M⊗ IJ) is equivalent to the
standard RIP of M. However, this might not be accurate. In
the first phase of the proof, X was assumed to have identical
columns, which might not be the case in practical settings.
In the second phase of the proof, the probabilistic nature of
the RIP condition (3) for random matrices was omitted, while
the union operation of probabilities was essentially involved
in the summation of RIP inequalities. Actually, as shown in
Proposition 1, the block-RIP of (M⊗ IJ) is equivalent to the
A-RIP of diag(M, . . . ,M); this is because only permutation
operations are involved in the transformation from one to the
other. Also in [10], it was proposed to use the unstructured
measurement matrix to improve the performance of MMV.
However, this approach is at the cost of higher computational
complexity and not applicable for the measurement vectors at
hand. In short, strict RIP-based analysis for the MMV model
has not been previously addressed.

B. Equivalence Results based on RIP Analysis

Here, we propose an alternative reformulation of the MMV
model, which can enable a thorough RIP-based analysis via
the results of Section II. Instead of vectorizing the transpose
of Y, let us concatenate the columns of matrix Y into one
long vector, i.e.,

vec(Y) = diag(M, . . . ,M)vec(X) (12)

where diag(M, . . . ,M) is BD with repeated blocks, and
vec(X) belongs to the AK . The above formulation fits the
model of (2), therefore, a the uniqueness of solution and the
recovery method with performance guarantees can be readily
established based on the results of Section II.

Theorem 4: Given the MMV model Y = MX, if M sat-
isfies the bound in (5) with δ2K <

√
2− 1, then applying the

`1 approach of (8) to (12), will uniquely recover the signal
matrix X with probability at least (1− e−t).

The proof can be achieved simply by combining Theorem
1 and Theorem 3 on the model of (12). A few remarks are



TABLE I
COMPARISON: BOUNDS ON M̃ UNDER DIFFERENT STRUCTURES IN Ψ AND x

Structure Structure in Ψ
in x Full populated Block diagonal

Arbitrary
JK-sparse 1

Standard CS [1], [2]
M̃ = O(JK log(N/K))

Standard RIP for BD in Corollary 1
M̃ = O(J2K log(N/K))

x ∈ AK
Model-based CS [9], [10]

M̃ = O(K log(N/K) + JK)

Our model
M̃ = O(JK log(N/K) + J2K)

in order. The number of measurements required for robust
recovery scales as M = O(K log(N/K) + JK). Compared
to M = O(K log(N/K)) that would be required by the
single measurement vector case, no improved performance is
theoretically guaranteed as discovered in previous works [5],
[6]. Conversely, additional measurements proportional to JK
are needed in order to recover multiple signal vectors. It is
clear that the recovery ability will not be improved when all
columns in X are the same. We cannot know what particular
signals would be the most difficult to recover. In the worst
case, it is quite possible that the benefit brought by one
additional measurement vector cannot remedy its incidental
estimation burden. Above all, the above analysis for the MMV
problem is the first strict RIP-based worst case analysis and
provides tighter bound than existing coherence-based analysis,
which usually require M = O(K2 log2N) [13]. For methods
with theoretically guaranteed performance improvement, we
refer to the average case analysis of [6] and the rank-aware
method of [7].

IV. DISCUSSIONS AND COMPARISONS

In this paper we have provide the first RIP analysis for block
diagonal matrices over the union of subspaces AK , i.e., A-RIP
of BD matrices.

For comparison, we list in Table I the number of measure-
ments bounds in four different models. The system model
in Corollary 1 of the appendix provides the bound for BD
matrices satisfying the standard RIP for arbitrary sparse signals
with JK nonzero entries. Compared with the bound for
model-based CS [9], [10], which is not for distributed sensing
applications, our bound is J times higher. This is due to the
fact that the measurement matrix in our model is BD with
much fewer nonzero random entries. Recall that for each node,
the robust recovery requires M = O(K log(N/K)). One
may say that the total number for separate recovery scales
as M̃ = O(JK log(N/K)), which is smaller than our result.
However, the simple addition for the number of measurements
above is not accurate, because the overall recovery probability
degrades.

APPENDIX
STANDARD RIP FOR RANDOM BD MATRICES

Based on the CoM inequality for the random BD matrix Ψ
in Lemma 1, it is easy to prove the standard RIP for Ψ.

Corollary 1: The BD matrix Ψ ∈ RM̃×Ñ , as stated in
Theorem 1, satisfies the RIP(K, δK) for some δK ∈ (0, 1),

t > 0 with probability at least (1− e−t) if

M ≥ c1δ−2
K

(
K log

Ñ

K
+K log(e(1 +

12

δK
)) + log 2 + t

)
.

Let us compare with the standard RIP for random BD
matrices in [4]. Particularly for signals which are arbitrarily
K sparse in the canonical basis, the authors in [4] claimed
that BD measurement matrix Ψ ∈ RM̃×Ñ with independent
blocks satisfies the RIP(K, δK) with high probability for
M̃ = O(JK log2K log2 Ñ) (here we substitute µ̃2(IÑ ) by
J in their original result). Our bound above, i.e., M̃ =
O(JK log(Ñ/K) + J log J), is tighter than that in [4] be-
cause it does not have the log2K term and scales linear-
logarithmically with Ñ . Similarly, we observe that our result
on the RIP for the BD matrix with repeated blocks attains
tighter bounds than the corresponding result in [4].
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