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Overview

We consider the problem of target estimation in distributed MIMO
radars that employ compressive sensing.

We formulate a sparse signal recovery problem with

magnitude constraints on the target reflection coefficients;
a special structure for the signal to be recovered consisting of equal
size blocks that have the same sparsity profile.

A solution is proposed based on the alternating direction method of
multipliers (ADMM), which

is computational more efficient as compared to algorithms based on
the interior point method;
has improved estimation accuracy resulting from exploiting prior infor-
mation on the target reflection coefficients;
is robust over a wide range of a manually chosen parameter.

A parallel implementation and a decentralized scheme are discussed.
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Distributed MIMO Radar Using Sparse Signal Recovery

We consider a MIMO radar system with Mt transmit nodes (TX) and
Mr receive nodes (RX) that are widely separated.

To exploit the spatial sparsity of the targets, the location space is
discretized on the grid Θ = {(xn , yn),n = 1, . . . ,N }.
The received baseband signal at the j -th RX zij (t) arising due to the
transmission of the i -th TX [Petropulu, Yu & Huang 2011]:

zij (t) =

N∑
n=1

snij xi(t − τ
n
ij ) + nij (t) (1)

xi(t) The i-th waveform

snij Reflectivity associated with the n-th grid point and TX/RX pair (i , j )

τnij Time delay associated with the n-th grid point and TX/RX pair (i , j )

nij (t) Noise for TX/RX pair (i , j )

If there is a target located on the n-th grid point, then snij is the target

complex RCS with |snij | ∈ [0, ω0] , Ω; otherwise snij is zero.
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Distributed MIMO Radar Using Sparse Signal Recovery

Obtain L Ts -spaced samples and express in vector form

zij = Ψij sij + nij (2)

where sij =
[
s1
ij , . . . , s

N
ij

]T
and

Ψij =

 xi (t0+0Ts−τ
1
ij ) ··· xi (t0+0Ts−τ

N
ij )

...
. . .

...
xi (t0+(L−1)Ts−τ

1
ij ) ··· xi (t0+(L−1)Ts−τ

N
ij )


L×N

The signal model for the overall MIMO radar system is

z =
[
(z11)T , . . . , (zMtMr

)T
]T

= Ψs + n (3)

where Ψ = diag(Ψ11, · · · ,ΨMtMr
) , s =

[
(s11)T , . . . , (sMtMr

)T
]T

and

n =
[
(n11)T , . . . , (nMtMr

)T
]T

.

s exhibits group sparsity: it is composed by MtMr sub-blocks, which
share the same sparsity profile.
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Distributed MIMO Radar Using Sparse Signal Recovery

Group sparsity (also known as block sparsity) was exploited to achieve
improved target estimation and further reduction of the number of
measurements needed.

Existing block sparse recovery methods used for distributed MIMO
radars include

Block Orthogonal Matching Pursuit (BOMP) [Gogineni, Nehorai 2011]:
Poor perfomance in noise
Group Lasso with proximal gradient algorithm (GLasso) [Petropulu,
Yu & Huang 2011]: High complexity, sensitive to the manually tuned
parameter
mixed `1/`2 norm optimization (L-OPT) [Li, Petropulu 2014]: High
compexity, assuming known noise variance

We are aiming for a recovery method with

low complexity and robust performance
flexibility of incoporating prior information
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Fast Signal Recovery based on ADMM

Reformulate for real variables:[
<{z}
={z}

]
︸ ︷︷ ︸

z̃

=

[
Ψ

Ψ

]
︸ ︷︷ ︸

Ψ̃

[
<{s}
={s}

]
︸ ︷︷ ︸

s̃

+

[
<{n}
={n}

]
︸ ︷︷ ︸

ñ

(4)

where Ψ̃ is still block diagonal, and s̃ ∈ R2NMtMr has group sparsity.

Solve the convex optimization problem

min
1

2
‖z̃− Ψ̃s̃‖22 + λ

N∑
n=1

‖s̃[In ]‖2

s.t . s̃ ∈ Ω2NMtMr

(5)

The set In ,∀n ∈ N+
N with cardinality 2MtMr indexes out entries in

s̃ corresponding to the n-th grid point.

The constraint s̃ ∈ Ω2NMtMr is satisfied if ‖
[
s̃[i ], s̃[i +NMtMr ]

]
‖2 ∈

Ω, ∀i ∈ N+
NMtMr

.
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Fast Signal Recovery based on ADMM

In order to use Alternating Direction Method of Multipliers (ADMM),
we introduce the auxillary variables y and x. The problem then
becomes

min
1

2
‖z̃− Ψ̃s̃‖22 +

N∑
n=1

λ‖yn‖2

s.t . yn = Dn s̃, ∀n ∈ N+
N ;

x = s̃, x ∈ Ω2NMtMr

(6)

where the matrix Dn selects the entries of s̃ indexed by In . We have
y = Ds̃ where D = [DT

1 , . . . ,D
T
N ], y,[yT

1 , . . . ,y
T
N ]T .

y is a permutation of s̃ and has block sparsity.

The auxiliary variable y is used to isolate s̃ from the group sparsity-
inducing term

∑
‖ · ‖2; the magnitude constraint is now imposed on

x instead of s̃.
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Fast Signal Recovery based on ADMM

The augmented Lagrangian can be written as

L(s̃,y,x;µ, ν) =
1

2
‖z̃− Ψ̃s̃‖22 + νT (x− s̃) +

ρ2

2
‖x− s̃‖22

+

N∑
n=1

(
λ‖yn‖2 + µT

n (yn −Dn s̃) +
ρ1

2
‖yn −Dn s̃‖22

) (7)

where ρ1, ρ2 > 0 and µ , [µT
1 , . . . , µ

T
N ]T ∈ R2NMtMr and ν ∈ R2NMtMr

are the Lagrangian multipliers.

ADMM is applicable if we group the variables into two blocks, i.e.,
(y,x) and s̃.

(yk+1,xk+1) = arg min
y,x∈Ω

NMtMr L(s̃k ,y,x;µk , νk ),

s̃k+1 = arg mins̃ L(s̃,yk+1,xk+1;µk , νk ),

νk+1 = νk + ρ2(xk+1 − s̃k+1),

µk+1 = µk + ρ1(yk+1 −Ds̃k+1).
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ADMM iterations (1)

The iterations for multipliers µ and ν are performed at costO(NMtMr )

The y-subproblem has computation cost O(NMtMr )

yk+1
n = max

{
‖s̄kn‖2 −

λ

ρ1

, 0

}
s̄kn

‖s̄kn‖2
, ∀n ∈ N+

N , (8)

where s̄kn = Dn s̃k − µk
n/ρ1 . Recall that multiplying by Dn only

invovles index selection.

The x-subproblem has computation cost O(NMtMr )

xk+1 = PΩ

(
s̃k+1 − νk

ρ2

)
, (9)

where PΩ(x) projects
(
x[i ],x[i+NMtMr ]

)
onto the region {(x , y)|x2+

y2 ≤ ω0} for all i ∈ N+
NMtMr

.
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ADMM iterations (2)

For the s̃-subproblem, the minimum is achieved by

0 ∈ ∂

∂s̃
L(s̃,yk+1,xk+1;µk , νk ) = As̃− bk (10)

where A = Ψ̃
T

Ψ̃ + (ρ1 + ρ2)I2NMtMr
is block-diagonal and fixed in

each iteration; bk = Ψ̃
T

z̃ + DTµk + ρ1D
Tyk+1 + νk + ρ2x

k+1.

System (10) can be decomposed into a set of subsystems of equations,
i.e.,

Am s̃k+1
m = bk

m , ∀m ∈ N+
2MtMr

, (11)

where Am =

{
ΨT

ij Ψij + (ρ1 + ρ2)IN if m ∈ [1,MtMr ]

Am−MtMr
otherwise

with j = bm−1
Mt
c+ 1 and i = m − (j − 1)Mt .

Am is guaranteed to be strictly diagonal dominant and symmetric.
The total number of operations to solve (11) is O(N 2MtMr ).
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Convergence and Advantages

The convergence of the above ADMM iterations is guaranteed by
results in the ADMM literature.

The computational cost is low: O(N 2MtMr ) v.s. O((NMtMr )3) for
interior point based methods .

The estimation accuracy is improved by introducing the amplitude
constraints.

The performance is robust over wide range of regularization parameter
λ (verified by the simulations).

The iterations of all variables exhibit separability.
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Implementation Schemes and Discussions

Parallel Implementation

all pairs (x
k
[i ],x

k
[i + NMtMr ]) in x

k
are updated independent of

others
a similar parallel scheme applies to µ

k
and ν

k
, and the update of y

k
n .

Fusion Center Aided Semi-Distributed Implementation

x, s and ν are divided into blocks, each of which can be updated
locally at one receive node;
The receive node j updates x

k+1
m , ν

k+1
m and s

k+1
m for all m ∈ Tj ,

{(j − 1)Mt + i ,MtMr + (j − 1)Mt + i |i ∈ N+
Mt
}. The computation

cost is O(N 2
Mt) at each node. v

k+1
m ∈ RN

, m ∈ N+
2MtMr

, denotes

the m-th block of the uniformly partitioned vector v
k+1

.
A fusion center performs the update of y and µ;
The computation cost is O(NMtMr ) at the fusion center.
In each iteration, each receive node uploads s̃

k+1
m and downloads y

k+1
m

from the fusion center.
y
k+1
m ∈ RN

denotes the m-th block of the uniformly partitioned D
T
y
k+1

.
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Simulations (1)

We evaluate the performance of our proposed method using as metrics
estimation error and running time.

Simulation setup

4 transmit and 4 receive nodes, waveforms with joint Gaussian entries;

SNR = 5dB ;

25× 10 grid points with 10m grid size;

The magnitude of the complex reflection coefficients has uniform dis-
tribution U [0.1, 0.8]. ω0 is chosen as 1.

Comparison methods

BOMP [Gogineni, Nehorai 2011] ;

GLasso using proximal gradient methods [Petropulu, Yu & Huang
2011];

L-OPT with ε = 2
√
LMtMrσn [Li, Petropulu 2011] with knowledge

of σn .
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Simulations (2)
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Figure: Performance under different number of measurements. 10 targets; for
GLasso λ = 0.02; and for the proposed method λ = 2, ρ1 = ρ2 = 1.
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Simulations (3)
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Figure: Performance under different number of targets. 50 measurements; for
GLasso λ = 0.02; and for the proposed method λ = 2, ρ1 = ρ2 = 1.
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Simulations (4)
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Figure: Performance under different values of λ.
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Conclusions

An ADMM-based efficient sparse signal recovery algorithm has been
proposed for target estimation in distributed MIMO radar.

Simulation results have indicated that the proposed algorithm signifi-
cantly lowers the computational complexity for target estimation and
improves accuracy.

Parallel implementation has also been considered for further reduction
of the execution time. A semi-distributed implementation, requiring
a fusion enter with minimal computational power, has also been dis-
cussed.
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The End

Thank You
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