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Abstract— We consider the problem of target estimation in
distributed MIMO radars that employ compressive sensing. The
problem is formulated as a sparse signal recovery problem with
magnitude constraints on the target reflection coefficients, where
the signal to be recovered consist of equal size blocks that
have the same sparsity profile. A solution is proposed based
on the alternating direction method of multipliers (ADMM),
which significantly lowers the computational complexity of sparse
recovery and improves the estimation accuracy. Due to the block
diagonal structure of the sensing matrix, the iterations of all
ADMM subproblems are amenable to parallel implementation,
which can reduce the running time. A semi-distributed imple-
mentation, which relaxes the need of a powerful fusion center is
also discussed.

Index Terms— Distributed MIMO radar, sparse sensing, AD-
MM.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radars [1]–[4] have
received considerable attention in recent years due to their
improved performance over traditional phased arrays radar
systems. Distributed MIMO radars are a special class of
MIMO radars in which the antennas are widely separated.
The multiple independent paths between the targets and the
transmit/receive antennas introduce spatial diversity, thus con-
tributing to the improved target estimation performance of
distributed MIMO radars. The introduction of compressive
sensing (CS) [5] in distributed MIMO radars has been shown
to enable good performance with fewer data [6]–[8]. In CS
based distributed MIMO radars, the target estimation problem
is formulated as a sparse vector recovery problem, where the
nonzero elements of the sparse vector indicate the presence of
targets in the discretized target space. By grouping together the
columns of the sensing matrix corresponding to the same grid
point, the sparse vector becomes group sparse (also known
as block sparse) [6]–[8], which can be exploited to achieve
improved target estimation and further reduction of the number
of measurements needed; this was validated in [6], [7] via
simulations, while the theoretical justification was provided in
[8].

The recovery of the block-sparse vector can be obtained
via Block Orthogonal Matching Pursuit (BOMP) [6], or Group
Lasso with proximal gradient algorithm (GLasso) [7], or mixed
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`1/`2 norm optimization (L-OPT) with interior point method
[8]. GLasso and L-OPT achieve better estimation performance
than BOMP but involve higher computational complexity and
require careful tuning of manually chosen parameters. By
exploiting the block diagonal structure in the sensing matrix,
[7] proposed to decouple the original problem into smaller
size problems, which reduces the complexity of the recovery
process. However, the scheme of [7] does not take advantage
of the identical sparsity profiles of the sub-blocks in the target
vector to improve estimation performance.

This paper considers the same scenario as in [6]–[8]. We
formulate the target estimation problem as a sparse signal
recovery problem, with the signal to be recovered consisting
of equal-size blocks of the same sparsity profile, and with
magnitude constraints on the target reflection coefficients. By
introducing auxiliary variables, we express the objective of
the optimization problem as a function of three variables.
The alternating direction method of multipliers (ADMM) is
applied to obtain the optimal solution by alternately optimizing
over these three variables. Each of the ADMM subproblems
in one iteration either has a closed form solution, or can
be solved fast. This significantly lowers the computational
complexity as compared to algorithms based on interior point
method. In addition, the assumed prior information on the
magnitude of target reflection coefficients allows for improved
estimation accuracy. The iterations of all ADMM subproblems
are amenable to parallel implementation, which allows for
reduction of running time. The parallel implementation here
is different from the decoupled scheme of [7], because here,
the identical sparsity profile in the sub-blocks of the target
vector is utilized via an auxiliary variable. We also discuss a
semi-distributed implementation of the solution, in which the
computations are distributed among all the receive nodes thus
obviating the need of a powerful fusion center. Simulations
validate the efficiency of the proposed algorithm and show
that the proposed algorithm is robust over a wide range of a
manually chosen parameter.

The paper is organized as follows. The sparse model for
distributed MIMO radar system is presented in Section II. In
Section III, a constrained optimization problem is proposed for
the target estimation, which is efficiently solved via ADMM
based iterations. Parallel and semi-decentralized implementa-
tion schemes are discussed in Section IV. Simulation results
are given in Section V, and conclusions are presented in



Section VI.

II. SIGNAL MODEL

We consider a MIMO radar system with Mt transmit
nodes (TX) and Mr receive nodes (RX) that are widely
separated. Let (xti, y

t
i) and (xri , y

r
i ) denote the locations of

the ith transmit and receive antennas in cartesian coordinates,
respectively. The ith TX antenna transmits the modulated
waveform xi(t)e

j2πfit, where fi is the carrier frequency.
Let us assume that there are K stationary point targets

present in the space. For simplicity, we consider a clutter-free
environment. To exploit the spatial sparsity of the targets, the
location space is discretized on the grid Θ = {(xn, yn), n =
1, . . . , N}. The received baseband signal zij(t) can be rewrit-
ten as a linear combination of the signal reflected from all grid
points, i.e.,

zij(t) =

N∑
n=1

snijxi(t− τnij) + nij(t) (1)

where nij(t) is the additive complex Gaussian noise; τnij and
snij represent the propagation time and reflection coefficient
associated with the n-th grid point and the transmit/receive
antennas (TX/RX) pair (i, j), respectively. It holds that

τnij = (dtin + drjn)/c,

d
t/r
in =

√
(x
t/r
i − xn)2 + (y

t/r
i − yn)2.

(2)

where c is the propagation speed, and (xn, yn) is the coordi-
nate of the n-th grid point. If there is a target located on the
n-th grid point, then snij is nonzero and models the combined
effects of target attenuation and fading during propagation;
otherwise snij is zero. In this paper, we consider complex
attenuation factors with magnitude less than ω0, which means
|snij | ∈ [0, ω0] , Ω. Such prior can be obtained, for example,
based on the distance between the region of interest and
the TX/RX pairs. This magnitude prior will be used later to
improve estimation accuracy.

On letting L denote the number of Ts-spaced samples from
the continuous waveforms, model (1) can be written into vector
form as

zij = Ψijsij + nij (3)

where zij = [zij(t0 + 0Ts), . . . , zij (t0 + (L− 1)Ts)]
T ,

nij = [nij(t0 + 0Ts), . . . , nij(t0 + (L− 1)Ts)]
T , sij =[

s1
ij , . . . , s

N
ij

]T
and

Ψij =

 xi(t0+0Ts−τ1ij) ··· xi(t0+0Ts−τNij )

...
. . .

...
xi(t0+(L−1)Ts−τ1ij) ··· xi(t0+(L−1)Ts−τNij )


L×N

(4)

with t0 being the sampling start time.
Let us define Ψ = diag(Ψ11, . . . ,ΨMtMr

). We can stack
the received samples from all the pairs of transmit and receive
antennas into a column vector z of length LMtMr,

z =
[
(z11)T , . . . , (zMtMr

)T
]T

= Ψs + n, (5)

where s =
[
(s11)T , . . . , (sMtMr )T

]T
and n = [(n11)T , . . . ,

(nMtMr )T ]T . Note that for every (i, j) pair, the entries of
vector sij are zero except those corresponding to grid points
occupied by targets. Thus, vector s exhibits group sparsity:
it is composed by MtMr sub-blocks, which share the same
sparsity profile, and each block has exactly K nonzero entries.
In addition, all the entries have magnitude in the range Ω ,
[0, ω0].

III. FAST SIGNAL RECOVERY BASED ON ADMM

A. Reformulation with real variables

Note that z, s and n are all complex vectors. We can
easily obtain the equivalent reformulation with real variables
as follows [

<{z}
={z}

]
︸ ︷︷ ︸

z̃

=

[
Ψ

Ψ

]
︸ ︷︷ ︸

Ψ̃

[
<{s}
={s}

]
︸ ︷︷ ︸

s̃

+

[
<{n}
={n}

]
︸ ︷︷ ︸

ñ

(6)

where <{·} and ={·} denote respectively the real and imag-
inary parts of a complex variable. It is clear that Ψ̃ is still
block diagonal and s̃ is composed by 2MtMr sub-blocks that
share the same sparsity profile and have exactly K nonzero
real entries.

We can recover the sparse target vector s̃, and thus s, by
solving the optimization problem

min
1

2
‖z̃− Ψ̃s̃‖22 + λ

N∑
n=1

‖s̃[In]‖2

s.t. s̃ ∈ Ω2NMtMr

(7)

where λ is the regularization parameter, and the set In,∀n ∈
N+
N has cardinality 2MtMr and contains the indices of the

n-th entries of all equal-length sub-blocks s̃11, . . . , s̃2MtMr
.

The constraint s̃ ∈ Ω2NMtMr is satisfied if ‖
[
s̃[i], s̃[i +

NMtMr]
]
‖2 ∈ Ω, ∀i ∈ N+

NMtMr
, where s̃[i] denotes the

i-th entry of s̃. The above optimization problem is convex
and can be solved by interior point methods. However, such
methods would involve high complexity. In the following, we
use the alternating direction method of multipliers (ADMM)
[9] to solve the problem at reduced complexity.

B. Fast algorithm based on ADMM

We introduce auxiliary variables y and x and rewrite (7)
equivalently as

min
1

2
‖z̃− Ψ̃s̃‖22 +

N∑
n=1

λ‖yn‖2

s.t. yn = Dns̃, ∀n ∈ N+
N ;

x = s̃, x ∈ Ω2NMtMr

(8)

where Dn is an (2MtMr) × (2NMtMr) matrix that selects
the entries of s̃ indexed by In; the vector y is defined as
[yT1 , . . . ,y

T
N ]T . We have y = Ds̃ where D = [DT

1 , . . . ,D
T
N ]

permutates s̃ into y. The auxiliary variable y is used to isolate
s̃ from the group sparsity-inducing term

∑
‖·‖2; the magnitude

constraint is now imposed on x instead of s̃. Now ADMM is



applicable if we group the variables into two blocks, i.e., (y,x)
and s̃. In the following, we show that the ADMM subproblems
can be solved fast.

The augmented Lagrangian of the above optimization prob-
lem can be written as follows

L(s̃,y,x;µ, ν) = 1

2
‖z̃− Ψ̃s̃‖22 + νT (x− s̃) +

ρ2
2
‖x− s̃‖22

+

N∑
n=1

(
λ‖yn‖2 + µTn (yn −Dns̃) +

ρ1
2
‖yn −Dns̃‖22

) (9)

where ρ1, ρ2 > 0 and µ , [µT1 , . . . , µ
T
N ]T ∈ R2NMtMr and

ν ∈ R2NMtMr are the Lagrangian multipliers.
Based on the framework of ADMM, we can solve (8) by

the following iterations

yk+1 = arg min
y
L(s̃k,y,xk;µk, νk), (10a)

xk+1 = arg min
x∈ΩNMtMr

L(s̃k,yk+1,x;µk, νk), (10b)

s̃k+1 = arg min
s̃
L(s̃,yk+1,xk+1;µk, νk), (10c)

νk+1 = νk + ρ2(xk+1 − s̃k+1), (10d)

µk+1 = µk + ρ1(yk+1 −Ds̃k+1). (10e)

The y-subproblem is well studied in the literature [10] and
its solution is given explicitly by the shrinkage operator

yk+1
n = max

{
‖s̄kn‖2 −

λ

ρ1
, 0

}
s̄kn
‖s̄kn‖2

, ∀n ∈ N+
N . (11)

where s̄kn = Dns̃k − µkn/ρ1. In total, the computation cost of
(11) scales as O(NMtMr).

For the x-subproblem, we have

xk+1 = PΩ

(
s̃k+1 − νk

ρ2

)
(12)

where PΩ(x) denotes the projection of
(
x[i],x[i+NMtMr]

)
onto a circle with radius ω0 for all i ∈ N+

NMtMr
. The compu-

tation of this projection involves O(NMtMr) operations.
The minimizer of the objective function is found as

0 ∈ ∂

∂s̃
L(s̃,yk+1,xk+1;µk, νk) = As̃− bk (13)

where A = Ψ̃T Ψ̃ + (ρ1 + ρ2)I2NMtMr
and bk = Ψ̃T z̃ +

DTµk+ρ1D
Tyk+1+νk+ρ2x

k+1, and IM denotes an identity
matrix of dimension M ×M . The solution can be obtained
by solving the following system of linear equations

As̃k+1 = bk. (14)

Given the signal model, A is fixed for all iterations. The
computational effort for bk in each iteration only involves
permutation and addition of vectors; this is because Ψ̃T z̃ is
also fixed. In addition, A is block diagonal because Ψ̃T Ψ̃
is block diagonal. System (14) can be written into a set of
subsystems of linear equations as follows

Ams̃k+1
m = bkm, ∀m ∈ N+

2MtMr
, (15)

where Am denotes the m-th diagonal block of matrix A;
vm denotes the m-th uniformly partitioned block of vector
v. From the definition of A, we know that

Am =

{
ΨT
ijΨij + (ρ1 + ρ2)IN if m ∈ [1,MtMr]

Am−MtMr
otherwise

(16)

where j = bm−1
Mt
c + 1 and i = m − (j − 1)Mt. bac denotes

the largest integer that is smaller than a. As observed in [8],
ΨT
ijΨij is symmetric with very small off-diagonal entries.

Therefore, Am is guaranteed to be strictly diagonal dominant
and symmetric for any ρ1, ρ2 > 0. Each system in (15) can be
solved efficiently with cost at most O(N2). The total number
of operations to solve (14) is of the order of O(N2MtMr).

Finally, the update for multipliers µ and ν can be carried
out as in (10) with linear complexity.

The convergence of the above iterations is guaranteed by
results in the ADMM literature [9]. The iterations stop when
the decrease of the objective value in (7) drops below a certain
threshold, or when the number of iterations reaches a certain
value.

The advantages of the proposed algorithm can be sum-
marized as follows. First, the computational cost is low.
As we know, solving (8) using an interior point method
would involve O((NMtMr)

3) operations [11]. For the pro-
posed algorithm, the computational cost in each iteration is
dominated by solving the system of linear equations (14),
which is O(N2MtMr). The reduction of computations is
more significant as the number of antennas increases. Second,
the estimation accuracy of s is improved by introducing
the amplitude constraints on the sparse target vector. Also,
the performance is robust over wide range of regularization
parameter λ. This is validated via simulations in Section V.
Lastly, due to the block diagonal structure in Ψ, the update
of s̃k+1 in (14) can be achieved by updating independent
sub-blocks in s̃k+1. The good separability in the update of
all variables facilitates the parallel implementation and the
decentralized scheme as discussed in the following section.

IV. IMPLEMENTATION SCHEMES AND DISCUSSIONS

A. Parallel Implementation

In the (k + 1)th iteration, it is clear that all pairs
(xk[i],xk[i+NMtMr]) in xk are updated independent of the
others, thus, the computations can be done in parallel. Similar
parallelism scheme applies to µk and νk, and the update of
ykn. The subsystems in (15) can also be solved in parallel.
Assuming that there are multiple computing units available
at the fusion center, the target estimation can be significantly
reduced.

B. Fusion Center Aided Semi-Distributed Implementation

The ADMM based approach described in Section III re-
quires a fusion center to perform the computations. However, a
semi-distributed implementation is also possible, as described
in the following.

x (respectively for s and ν) can be divided into blocks,
each of which can be updated locally at one receive antenna.



However, the update of y and µ cannot be done locally. One
receive node would have to be assigned to act as a fusion
center, and perform the update of y and µ. The computational
requirements of that fusion center would be much lower than
those of the fusion center of the Section III.

The fusion center aided semi-distributed scheme is sum-
marized in Algorithm 1. In the implementation of Algorithm
1, s̃k+1

m ∈ RN (respectively for νk+1
m ,xk+1

m ), m ∈ N+
2MtMr

,
denotes the m-th block of the uniformly partitioned s̃k+1.
yk+1
m ∈ RN denotes the m-th block of the uniformly par-

titioned DTyk+1. The receive node j updates xk+1
m , νk+1

m and
sk+1
m for all m ∈ Tj , {(j − 1)Mt + i,MtMr + (j − 1)Mt +
i|i ∈ N+

Mt
}. The fusion center updates y and µ. Thus, the

computation cost is O(N2Mt) at each node and O(NMtMr)
at the fusion center. We can see that the computations are
distributed among all receive nodes. The computation and
memory required at the fusion center are only linear with the
dimension of sparse vector y. In each iteration, each node
communicates s̃k+1

m and yk+1
m to the fusion center. After a

few iterations, the nonzero entries in s̃k+1
m and yk+1

m would be
of the order of O(K).

A fully distributed scheme would also be possible, but
would require consensus; consensus-based implementations
converge slowly, which would be a problem in target esti-
mation and tracking applications.

Algorithm 1 Semi-Distributed Implementation
One peer receive node is chosen as the fusion center.
Input Ψ̃, z̃, λ, ρ1, ρ2

Initialization s̃(0) = x(0) = y(0) = 0, µ(0) = ν(0) = 0
Iteration
Fusion Center:

compute yk+1
n , n ∈ N+

N by (11);
Node j ∈ N+

Mr
: for all m ∈ Tj

download yk+1
m from the fusion center;

compute [xk+1
m ; xk+1

m+MtMr
] = PΩ([x̂k+1

m ; x̂k+1
m+MtMr

])
where x̂k+1

m = s̃k+1
m − νkm/ρ2;

compute s̃k+1
m by solving (15);

compute νk+1
m = νkm + ρ2(xk+1

m − s̃k+1
m );

upload s̃k+1
m to the fusion center;

Fusion Center:
compute µk+1 by (10e);

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm, described in Section III. We consider a MIMO radar
system with 4 TX and 4 RX antennas, distributed uniformly on
a circle of radius of 6, 000m and 3, 000m, respectively. Each
TX radar transmits pulses with repetition interval 0.125ms
and carrier frequency of 5GHz. Each RX radar operates with
sampling frequency 5MHz. The signal-to-noise ratio (SNR)
is defined as 10 log10(σ2

0/σ
2
n), and is set to be 5 dB. The

space of interest is discretized into 25 × 10 grid points with
10 meters grid size. We randomly generate K targets on
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Fig. 1. Performance under different number of measurements. 10 targets;
for GLasso λ = 0.02; and for the proposed method λ = 2, ρ1 = ρ2 = 1.

the grid. The dimension of the target vector in (6) is 8000
with 32×K nonzero entries. The magnitude of the complex
reflection coefficients for each target in each trial is randomly
generated from uniform distribution in the range of [0.1, 0.8].
ω0 is chosen as 1.

The BOMP [6], GLasso [7] and L-OPT [8] are implemented
for comparison. For GLasso, we choose λ = 0.02 for the
best performance. For L-OPT, we set ε = 2

√
LMtMrσn [8]

with the knowledge of σn. As for the proposed algorithm,
preconditioned conjugate gradient is used to solve the system
(14). The estimation error ‖ŝ−s‖2 and the CPU running time
are used as the performance metrics. All results are averaged
over 100 independent trials.

We first fix K = 10 and evaluate the performance under
different number of measurements L. The results are plotted
in Figure 1. The proposed algorithm achieves lower estimation
errors with less CPU run time as compared to GLasso and
L-OPT under all L’s. The CPU run time of the proposed
algorithm remains less than 5s, while the run time of L-OPT
grows superlinearly with L.

Next, we consider the performance of the proposed scheme
for different number of targets and fixed number of measure-
ments L = 50. The results are plotted in Figure 2. For all
values of K, the proposed algorithm achieves lower estimation
errors than L-OPT using around one quarter CPU run time.

In the above simulation, L-OPT requires knowledge of the
noise variance σ2

n. The regularization parameter λ in GLasso
and the proposed algorithm also need to be manually tuned.
In fact, the choice of such parameters are critical for the
estimation performance. In Fig. 3, we plot the estimation
errors for a wide range of λ. We observe that the estimation
error of the proposed algorithm remains very small for a wide
range of λ’s, while for GLasso, the range of good λ’s is very
narrow. The robustness to λ makes the proposed algorithm
good candidate for real world applications.

VI. CONCLUSIONS

In this paper, we have proposed an ADMM-based efficient
sparse signal recovery algorithm for target estimation in dis-
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tributed MIMO radar. Simulation results have indicated that
the proposed algorithm significantly lowers the computational
complexity for target estimation with improved accuracy.
Parallel implementation has also been considered for further
reduction of the execution time. A semi-distributed implemen-
tation, requiring a fusion enter with minimal computational
power, has also been discussed. The proposed algorithm can be
readily extended for distributed compressive sensing systems
in [12], [13].
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